General Chemistry, 10th Edition by Darrell Ebbing – Test Bank

$30.00

Category:

Description

INSTANT DOWNLOAD WITH ANSWERS
General Chemistry, 10th Edition 10th Edition by Darrell Ebbing – Test Bank

 

Chapter 2 – Atoms, Molecules, and Ions

 

  1. Which of the following is/are postulates of Dalton’s atomic theory?
1. Atoms combine in fixed ratios of whole numbers.
2. Atoms of each element have different properties.
3. Elements occur as solids, liquids, or gases.

 

A) 1 only
B) 2 only
C) 3 only
D) 1 and 2
E) 1, 2, and 3

 

 

ANS:   D                     PTS:    1                      DIF:    easy                 REF:    2.1

OBJ:    List the postulates of atomic theory.

TOP:    early atomic theory | atomic theory of matter

 

  1. Which of the following statements best describes the particulate representation depicted by the picture?

 

A) The figure is a representation of a gas made up of a single element.
B) The figure is a representation of a liquid mixture of two elements.
C) The figure is a representation of a molecular solid.
D) The figure is a representation of a liquid mixture of two compounds.
E) The figure is a representation of a gas of a compound.

 

 

ANS:   A                     PTS:    1                      DIF:    moderate         REF:    2.1

OBJ:    Define element, compound, and chemical reaction in the context of these postulates.

TOP:    early atomic theory | atomic theory of matter

 

  1. Which of the following is not a correct name–symbol combination?
A) cobalt, Co
B) vanadium, V
C) neon, Ne
D) scandium, Sc
E) titanium, Mg

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    2.1

OBJ:    Recognize the atomic symbols of the elements.

TOP:    early atomic theory | atomic theory of matter

 

  1. The symbol for tin is
A) T.
B) Tn.
C) Si.
D) Ti.
E) Sn.

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    2.1

OBJ:    Recognize the atomic symbols of the elements.

TOP:    early atomic theory | atomic theory of matter                                    KEY:    atomic symbol

MSC:   general chemistry

 

  1. What is the symbol for the element phosphorus?
A) Po
B) P
C) Pt
D) K
E) Pr

 

 

ANS:   B                     PTS:    1                      DIF:    easy                 REF:    2.1

OBJ:    Recognize the atomic symbols of the elements.

TOP:    early atomic theory | atomic theory of matter                                    KEY:    atomic symbol

MSC:   general chemistry

 

  1. Which one of the following lists gives the correct symbols for the elements phosphorus, potassium, silver, chlorine, and sulfur?
A) P, Po, Ag, Cl, S
B) K, Ag, Po, Cl, S
C) P, K, Ag, Cl, S
D) Ph, K, Ag, S, Cl
E) Ph, Po, Ag, Cl, S

 

 

ANS:   C                     PTS:    1                      DIF:    easy                 REF:    2.1

OBJ:    Recognize the atomic symbols of the elements.

TOP:    early atomic theory | atomic theory of matter                                    KEY:    atomic symbol

MSC:   general chemistry

 

  1. Which of the following lists gives the atomic symbols for potassium, magnesium, beryllium, and sodium?
A) Po, Mn, Br, Na
B) P, Mn, Be, Se
C) K, Mg, Be, Na
D) Pt, Mg, Be, Sc
E) K, Mn, Br, Na

 

 

ANS:   C                     PTS:    1                      DIF:    easy                 REF:    2.1

OBJ:    Recognize the atomic symbols of the elements.

TOP:    early atomic theory | atomic theory of matter                                    KEY:    atomic symbol

MSC:   general chemistry

 

  1. The names of the elements whose symbols are Si, P, Mn, and S are, respectively,
A) silicon, phosphorus, manganese, and sulfur.
B) silicon, potassium, magnesium, and sulfur.
C) silver, phosphorus, magnesium, and sodium.
D) silver, potassium, manganese, and sodium.
E) silicon, potassium, manganese, and sulfur.

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    2.1

OBJ:    Recognize the atomic symbols of the elements.

TOP:    early atomic theory | atomic theory of matter                                    KEY:    atomic symbol

MSC:   general chemistry

 

  1. Which of the following is the atomic symbol for the element cobalt?
A) CO
B) Co
C) C
D) co
E) All of the above

 

 

ANS:   B                     PTS:    1                      DIF:    easy                 REF:    2.1

OBJ:    Recognize the atomic symbols of the elements.

TOP:    early atomic theory | atomic theory of matter                                    KEY:    atomic symbol

MSC:   general chemistry

 

  1. A series of silicon–hydrogen compounds with the general formula SinH2n+2 can be represented by the known compounds SiH4, Si2H6, and Si3H8.  This best illustrates the law of
A) multiple proportions.
B) conservation of charge.
C) definite composition.
D) conservation of mass.
E) conservation of atoms.

 

 

ANS:   A                     PTS:    1                      DIF:    moderate         REF:    2.1

OBJ:    Explain the significance of the law of multiple proportions.

TOP:    early atomic theory | atomic theory of matter

KEY:   Dalton’s atomic theory                       MSC:   general chemistry

 

  1. According to the law of multiple proportions:
A) the total mass is the same after a chemical change as before the change.
B) it is not possible for the same two elements to form more than one compound.
C) the ratio of the masses of the elements in a compound is always the same.
D) if the same two elements form two different compounds, they do so in the same ratio.
E) none of these

 

 

ANS:   E                     PTS:    1                      DIF:    moderate         REF:    2.1

OBJ:    Explain the significance of the law of multiple proportions.

TOP:    general concepts | matter                    KEY:   compound       MSC:   general chemistry

 

  1. Which of the following pairs of compounds can be used to illustrate the law of multiple proportions?
A) H2O and HCl
B) NO and NO2
C) NH4 and NH4Cl
D) ZnO2 and ZnCl2
E) CH4 and CO2

 

 

ANS:   B                     PTS:    1                      DIF:    moderate         REF:    2.1

OBJ:    Explain the significance of the law of multiple proportions.

TOP:    general concepts | matter                    KEY:   compound       MSC:   general chemistry

 

  1. Cathode rays are
A) anions.
B) protons.
C) cations.
D) positrons.
E) electrons.

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    2.2

OBJ:    Describe Thomson’s experiment in which he discovered the electron.

TOP:    early atomic theory | atomic theory of matter

KEY:   structure of the atom | discovery of electron                         MSC:   general chemistry

 

  1. A subatomic particle is
A) a piece of an atom.
B) only found in the nucleus of an atom.
C) always positively charged.
D) larger than the nucleus of an atom.
E) always negatively charged.

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    2.1 | 2.2

OBJ:    Describe Rutherford’s nuclear model and the makeup of the nucleus.

TOP:    early atomic theory | atomic theory of matter

 

  1. Experiments were carried out in which a beam of cathode rays was first bent by a magnetic field and then bent back by an electrostatic field until the beam hit the screen exactly where it had been hitting before the fields were applied. This experiment permitted the direct measurement of
A) the ratio of mass to charge of an electron.
B) the charge on the nucleus of an atom.
C) the charge on the electron.
D) the mass of the atom.
E) the mass of the electron.

 

 

ANS:   A                     PTS:    1                      DIF:    moderate         REF:    2.2

OBJ:    Describe Thomson’s experiment in which he discovered the electron.

TOP:    early atomic theory | atomic theory of matter

KEY:   structure of the atom | discovery of electron                         MSC:   general chemistry

 

  1. Who discovered the electron?
A) Bohr
B) de Broglie
C) Rutherford
D) Heisenberg
E) Thomson

 

 

ANS:   E                     PTS:    1                      DIF:    moderate         REF:    2.2

OBJ:    Describe Thomson’s experiment in which he discovered the electron.

TOP:    early atomic theory | atomic theory of matter

KEY:   structure of the atom | discovery of electron                         MSC:   general chemistry

 

  1. Which of the following conclusions regarding Rutherford’s gold foil experiment is not consistent with the observations?
A) The nucleus occupies only a small portion of the space of an atom.
B) Most alpha particles travel straight through the gold foil.
C) The nucleus occupies a large amount of the atom space.
D) The nucleus, like the alpha particles used to bombard the gold foil, is positively charged.
E) Wide angle deflections result from a collision of an alpha particle and a gold atom nucleus.

 

 

ANS:   C                     PTS:    1                      DIF:    easy                 REF:    2.2

OBJ:    Describe Rutherford’s experiment that led to the nuclear model of the atom.

TOP:    early atomic theory | atomic theory of matter

 

  1. Who discovered the nucleus of an atom?
A) Thomson
B) de Broglie
C) Rutherford
D) Bohr
E) Heisenberg

 

 

ANS:   C                     PTS:    1                      DIF:    easy                 REF:    2.2

OBJ:    Describe Rutherford’s experiment that led to the nuclear model of the atom.

TOP:    early atomic theory | atomic theory of matter

KEY:   structure of the atom | nuclear model of atom                       MSC:   general chemistry

 

  1. If the Thomson model of the atom had been correct, Rutherford would have observed
A) alpha particles bouncing off the foil.
B) alpha particles going through the foil with little or no deflection.
C) alpha particles greatly deflected by the metal foil.
D) positive particles formed in the foil.
E) None of the above observations is consistent with the Thomson model of the atom.

 

 

ANS:   B                     PTS:    1                      DIF:    moderate         REF:    2.2

OBJ:    Describe Rutherford’s experiment that led to the nuclear model of the atom.

TOP:    early atomic theory | atomic theory of matter

KEY:   structure of the atom | nuclear model of atom                       MSC:   general chemistry

 

  1. The nucleus of a 208Pb nuclide contains
A) 208 neutrons and 290 electrons.
B) 82 protons and 208 neutrons.
C) 208 protons and 126 electrons.
D) 208 protons, 82 neutrons, and 208 electrons.
E) 82 protons and 126 neutrons.

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    2.3

OBJ:    Define atomic number, mass number, and nuclide.

TOP:    early atomic theory | atomic theory of matter                                    KEY:    atomic symbol

MSC:   general chemistry

 

  1. If two different nuclides have the same atomic number, it must mean that
A) they have the same atomic mass.
B) they have the same mass number.
C) they have the same number of protons.
D) they have the same number of electrons.
E) they have the same number of neutrons.

 

 

ANS:   C                     PTS:    1                      DIF:    easy                 REF:    2.3

OBJ:    Define atomic number, mass number, and nuclide.

TOP:    early atomic theory | atomic theory of matter                                    KEY:    nuclear structure

MSC:   general chemistry

 

  1. If two different nuclides have the same mass number, it must mean that
A) the combined number of protons and neutrons are the same.
B) both have the same number of neutrons.
C) both have the same number of electrons.
D) both have the same number of protons.
E) they are isotopes.

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    2.3

OBJ:    Define atomic number, mass number, and nuclide.

TOP:    early atomic theory | atomic theory of matter                                    KEY:    nuclear structure

MSC:   general chemistry

 

  1. The number of protons in a given nucleus determines the
A) mass number.
B) atomic number.
C) number of electrons.
D) number of protons.
E) number of isotopes.

 

 

ANS:   B                     PTS:    1                      DIF:    easy                 REF:    2.3

OBJ:    Define atomic number, mass number, and nuclide.

TOP:    early atomic theory | atomic theory of matter                                    KEY:    nuclear structure

MSC:   general chemistry

 

  1. Which nuclide has the same number of protons as ?
A)
B)
C)
D)
E)

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    2.3

OBJ:    Write the nuclide symbol for a given nuclide.

TOP:    early atomic theory | atomic theory of matter                                    KEY:    nuclear structure

MSC:   general chemistry

 

  1. How many electrons does the ion  have?
A) 18
B) 36
C) 16
D) 34
E) 19

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    2.3

OBJ:    Write the nuclide symbol for a given nuclide.

TOP:    early atomic theory | atomic theory of matter

 

  1. How many protons are there in the chromium-52 nuclide?
A) 29
B) 76
C) 23
D) 24
E) 28

 

 

ANS:   D                     PTS:    1                      DIF:    easy                 REF:    2.3

OBJ:    Write the nuclide symbol for a given nuclide.

TOP:    early atomic theory | atomic theory of matter                                    KEY:    atomic symbol

MSC:   general chemistry

 

  1. How many neutrons are there in the cobalt-59 nuclide?
A) 27
B) 2
C) 86
D) 59
E) 32

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    2.3

OBJ:    Write the nuclide symbol for a given nuclide.

TOP:    early atomic theory | atomic theory of matter                                    KEY:    atomic symbol

MSC:   general chemistry

 

  1. An atom that has the same number of neutrons as  is
A) .
B) .
C) .
D) .
E) .

 

 

ANS:   B                     PTS:    1                      DIF:    easy                 REF:    2.3

OBJ:    Write the nuclide symbol for a given nuclide.

TOP:    early atomic theory | atomic theory of matter                                    KEY:    atomic symbol

MSC:   general chemistry

 

  1. Which combination of protons, neutrons, and electrons correctly represents a 56Fe nuclide?
A) 26 protons, 30 neutrons, 56 electrons
B) 26 protons, 30 neutrons, 30 electrons
C) 26 protons, 30 neutrons, 26 electrons
D) 56 protons, 26 neutrons, 56 electrons
E) 56 protons, 26 neutrons, 26 electrons

 

 

ANS:   C                     PTS:    1                      DIF:    easy                 REF:    2.3

OBJ:    Write the nuclide symbol for a given nuclide.

TOP:    early atomic theory | atomic theory of matter                                    KEY:    atomic symbol

MSC:   general chemistry

 

  1. The species that has the same number of neutrons as  is
A) .
B) .
C) .
D) .
E) .

 

 

ANS:   A                     PTS:    1                      DIF:    moderate         REF:    2.3

OBJ:    Write the nuclide symbol for a given nuclide.

TOP:    early atomic theory | atomic theory of matter                                    KEY:    atomic symbol

MSC:   general chemistry

 

  1. Which of the following nuclides contains more protons than neutrons?
A)
B)
C)
D)
E)

 

 

ANS:   A                     PTS:    1                      DIF:    moderate         REF:    2.3

OBJ:    Write the nuclide symbol for a given nuclide.

TOP:    early atomic theory | atomic theory of matter

 

  1. How many neutrons are there in 6 molecules of ?
A) 204
B) 102
C) 6
D) 396
E) 192

 

 

ANS:   A                     PTS:    1                      DIF:    difficult           REF:    2.3

OBJ:    Write the nuclide symbol for a given nuclide.

TOP:    early atomic theory | atomic theory of matter

 

  1. Suppose atom 1 has the same number of protons as atom 2, and atom 2 has the same number of neutrons as atom 3.  Atom 1 does not have the same number of neutrons as atom 3. Which of the following statements is true?
A) Atom 3 must have the same number of protons as atom 2.
B) Atoms 1 and 2 must be isotopes.
C) Atoms 1 and 3 must be isotopes.
D) Atom 2 must have the same number of neutrons as atom 1.
E) Atom 3 must have the same number of protons as atom 1.

 

 

ANS:   B                     PTS:    1                      DIF:    difficult           REF:    2.3

OBJ:    Define and provide examples of isotopes of an element.

TOP:    early atomic theory | atomic theory of matter                                    KEY:    nuclear structure

MSC:   general chemistry

 

  1. Which of the following statements is true concerning the two nuclides  and ?
A) They have the same number of neutrons.
B) They are isotopes.
C) They have the same relative atomic mass.
D) They have the same mass number.
E) They have different chemical properties.

 

 

ANS:   B                     PTS:    1                      DIF:    easy                 REF:    2.3

OBJ:    Define and provide examples of isotopes of an element.

TOP:    early atomic theory | atomic theory of matter                                    KEY:    isotope

MSC:   general chemistry

 

  1. Which of the following atomic symbols represents an isotope of ?
A)
B)
C)
D)
E)

 

 

ANS:   D                     PTS:    1                      DIF:    easy                 REF:    2.3

OBJ:    Define and provide examples of isotopes of an element.

TOP:    early atomic theory | atomic theory of matter                                    KEY:    isotope

MSC:   general chemistry

 

  1. Which of the following represents a pair of isotopes?
  Atomic Number Mass Number

 

A) I          17                       36

II         18                       36

B) I           7                        15

II          8                        15

C) I          17                       35

II         17                       37

D) I          17                       37

II         18                       38

E) I            7                       16

II           8                       17

 

 

ANS:   C                     PTS:    1                      DIF:    easy                 REF:    2.3

OBJ:    Define and provide examples of isotopes of an element.

TOP:    early atomic theory | atomic theory of matter                                    KEY:    isotope

MSC:   general chemistry

 

  1. There are three isotopes of carbon differing with respect to
A) electron configuration.
B) nuclear charge.
C) number of neutrons.
D) number of protons.
E) atomic number.

 

 

ANS:   C                     PTS:    1                      DIF:    easy                 REF:    2.3

OBJ:    Define and provide examples of isotopes of an element.

TOP:    early atomic theory | atomic theory of matter                                    KEY:    isotope

MSC:   general chemistry

 

  1. Which of the following about the isotopes of a particular element is not true?
A) Each unique isotope has a different atomic mass.
B) Each unique isotope has a different atomic number.
C) Each unique isotope has a different number of neutrons.
D) Each unique isotope has the same number of protons.
E) In neutral atoms of each unique isotope, the number of electrons equals the number of protons.

 

 

ANS:   B                     PTS:    1                      DIF:    moderate         REF:    2.3

OBJ:    Define and provide examples of isotopes of an element.

TOP:    early atomic theory | atomic theory of matter

 

  1. The neutral atoms of all the isotopes of the same element have
A) different numbers of protons.
B) the same number of neutrons.
C) the same number of electrons.
D) the same mass.
E) the same mass number.

 

 

ANS:   C                     PTS:    1                      DIF:    easy                 REF:    2.3

OBJ:    Define and provide examples of isotopes of an element.

TOP:    early atomic theory | atomic theory of matter                                    KEY:    isotope

MSC:   general chemistry

 

  1. What is the symbol of the nuclide having 15 protons and 16 neutrons?
A)
B)
C)
D)
E)

 

 

ANS:   C                     PTS:    1                      DIF:    moderate         REF:    2.3

OBJ:    Write the nuclide symbol of an element. (Example 2.1)

TOP:    early atomic theory | atomic theory of matter                                    KEY:    atomic symbol

MSC:   general chemistry

 

  1. Which of the following has 62 neutrons, 46 protons, and 46 electrons?
A)
B)
C)
D)
E)

 

 

ANS:   B                     PTS:    1                      DIF:    easy                 REF:    2.3

OBJ:    Write the nuclide symbol of an element. (Example 2.1)

TOP:    general concepts | atomic theory of matter

 

  1. Which of the following elements has the largest atomic mass?
A) rhenium
B) manganese
C) thallium
D) argon
E) fluorine

 

 

ANS:   C                     PTS:    1                      DIF:    easy                 REF:    2.4

OBJ:    Define atomic mass unit and atomic weight.

TOP:    early atomic theory | atomic theory of matter

KEY:   atomic weight | atomic mass unit       MSC:   general chemistry

 

  1. The mass spectrum of an element with two naturally occurring isotopes is shown below. What is the best estimate of the element’s atomic mass?
A) 10 amu
B) 11 amu
C) 10.8 amu
D) 10.2 amu
E) 10.5 amu

 

 

ANS:   C                     PTS:    1                      DIF:    moderate         REF:    2.4

OBJ:    Describe how a mass spectrometer can be used to determine the fractional abundance of the isotopes of an element.

TOP:    early atomic theory | atomic theory of matter

 

  1. The mass spectrum of an element with two naturally occurring isotopes is shown below. Its average atomic mass would be best estimated as
A) less than 26 amu but greater than 25 amu.
B) less than 25 amu but greater than 24 amu.
C) equal to 24 amu.
D) equal to 25 amu.
E) greater than 26 amu.

 

 

ANS:   B                     PTS:    1                      DIF:    moderate         REF:    2.4

OBJ:    Describe how a mass spectrometer can be used to determine the fractional abundance of the isotopes of an element.

TOP:    early atomic theory | atomic theory of matter

 

  1. Lithium has two naturally occurring isotopes, 6Li and 7Li .  The average atomic mass of lithium is 6.941.  Which of the following statements concerning the relative abundance of each isotope is correct?
A) The abundance of 7Li is greater than 6Li.
B) The abundance of 7Li is less than 6Li.
C) The abundance of 6Li is equal to the abundance of 7Li.
D) Not enough data is provided to determine the correct answer.
E) Based on the atomic mass, only 7Li occurs naturally.

 

 

ANS:   A                     PTS:    1                      DIF:    moderate         REF:    2.4

OBJ:    Describe how a mass spectrometer can be used to determine the fractional abundance of the isotopes of an element.

TOP:    early atomic theory | atomic theory of matter

 

  1. A certain element is listed as having an atomic mass of 63.5 amu. It is probably true that this element contains
A) a mixture of isotopes.
B) a mixture of neutrons.
C) a mixture of isomers.
D) a mixture of allotropes.
E) a mixture of ions.

 

 

ANS:   A                     PTS:    1                      DIF:    moderate         REF:    2.4

OBJ:    Determine the atomic mass of an element from the isotopic masses and fractional abundances. (Example 2.2)

TOP:    early atomic theory | atomic theory of matter                                    KEY:    atomic weight

MSC:   general chemistry

 

  1. The average atomic mass of Eu is 151.96 amu. There are only two naturally occurring isotopes of europium, 151Eu with a mass of 151.0 amu and 153Eu with a mass of 153.0 amu. The natural abundance of the 131Eu isotope must be approximately
A) 60%.
B) 20%.
C) 50%.
D) 80%.
E) 40%.

 

 

ANS:   C                     PTS:    1                      DIF:    moderate         REF:    2.4

OBJ:    Determine the atomic mass of an element from the isotopic masses and fractional abundances. (Example 2.2)

TOP:    early atomic theory | atomic theory of matter                                    KEY:    atomic weight

MSC:   general chemistry

 

  1. Naturally occurring element X exists in three isotopic forms: X-28 (27.977 amu, 92.21% abundance), X-29 (28.976 amu, 4.70% abundance), and X-30 (29.974 amu, 3.09% abundance). Calculate the atomic weight of X.
A) 29.09 amu
B) 28.09 amu
C) 35.29 amu
D) 86.93 amu
E) 25.80 amu

 

 

ANS:   B                     PTS:    1                      DIF:    moderate         REF:    2.4

OBJ:    Determine the atomic mass of an element from the isotopic masses and fractional abundances. (Example 2.2)

TOP:    early atomic theory | atomic theory of matter                                    KEY:    atomic weight

MSC:   general chemistry

 

  1. Neon has three naturally occuring isotopes.  The abundance of  20Ne is 90.48% and 22Ne is 9.25%.  What is the percent abundance of  21Ne?
A) 9.25%
B) 0.27%
C) 49.9%
D) 33.2%
E) 81.2%

 

 

ANS:   B                     PTS:    1                      DIF:    easy                 REF:    2.4

OBJ:    Determine the atomic mass of an element from the isotopic masses and fractional abundances.      TOP:            early atomic theory | atomic theory of matter

 

  1. An element, X, has the following isotopic composition: X-200, 90%; X-199, 8.0%; and X-202, 2.0%. Its average atomic mass is closest to
A) 200 amu.
B) 203 amu.
C) 199 amu.
D) 202 amu.
E) 201 amu.

 

 

ANS:   A                     PTS:    1                      DIF:    moderate         REF:    2.4

OBJ:    Determine the atomic mass of an element from the isotopic masses and fractional abundances. (Example 2.2)

TOP:    early atomic theory | atomic theory of matter                                    KEY:    atomic weight

MSC:   general chemistry

 

  1. Which of the following concerning atomic mass is/are correct?

 

1. The atomic mass listed on a modern periodic table for each element is the mass of the most abundant isotope.
2. The atomic mass listed on a modern periodic table is a relative atomic mass, based on the definition that 12C equals 12 amu.
3. Relative atomic masses can only be determined with a mass spectrometer.

 

A) 1 only
B) 2 only
C) 1 and 2
D) 2 and 3
E) 1, 2, and 3

 

 

ANS:   B                     PTS:    1                      DIF:    moderate         REF:    2.4

OBJ:    Determine the atomic mass of an element from the isotopic masses and fractional abundances.      TOP:            early atomic theory | atomic theory of matter

 

  1. A periodic law based on atomic masses would necessitate Te and I changing places in the periodic table. This was not done in the early periodic table because
A) a periodic law based on atomic masses is not valid.
B) it was thought that the atomic masses might be in error.
C) iodine behaves chemically like chlorine and bromine.
D) the tellurium samples could contain a heavy impurity.
E) iodine contains one naturally occurring isotope, whereas tellurium consists of several isotopes.

 

 

ANS:   C                     PTS:    1                      DIF:    easy                 REF:    2.5

OBJ:    Identify periods and groups on the periodic table.

TOP:    early atomic theory | periodic table    KEY:   group               MSC:   general chemistry

 

  1. The elements in a row of the periodic table are known as
A) metals.
B) a period.
C) metalloids.
D) a family.
E) a group.

 

 

ANS:   B                     PTS:    1                      DIF:    easy                 REF:    2.5

OBJ:    Identify periods and groups on the periodic table.

TOP:    early atomic theory | periodic table    KEY:   period              MSC:   general chemistry

 

  1. Which of the following statements about different elements is incorrect?
A) Potassium is an alkali metal.
B) Fluorine is a halogen.
C) Aluminum is a transition element.
D) Barium is an alkaline earth metal.
E) Helium is a noble gas.

 

 

ANS:   C                     PTS:    1                      DIF:    easy                 REF:    2.5

OBJ:    Find the main-group and transition elements on the periodic table.

TOP:    early atomic theory | periodic table    MSC:   general chemistry

 

  1. Which of the following statements is not true about the element calcium?
A) It is a metal.
B) It is an alkaline earth metal.
C) It is in period 4.
D) It has chemical and physical properties most similar to silver.
E) It is in group IIA (group 2).

 

 

ANS:   D                     PTS:    1                      DIF:    easy                 REF:    2.5

OBJ:    Find the main-group and transition elements on the periodic table.

TOP:    early atomic theory | periodic table

 

  1. The elements in groups 1A-8A or 1-2 and 15-18 are known as the
A) main group.
B) alkaline earth metals.
C) metalloids or semimetals.
D) halogens.
E) transition metals.

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    2.5

OBJ:    Locate the alkali metal and halogen groups on the periodic table.

TOP:    early atomic theory | periodic table

 

  1. Choose the group containing the most reactive nonmetals.
A) Group 5A
B) Group 3A
C) Group 7A
D) Group 8A
E) Group 1A

 

 

ANS:   C                     PTS:    1                      DIF:    easy                 REF:    2.5

OBJ:    Locate the alkali metal and halogen groups on the periodic table.

TOP:    early atomic theory | periodic table    KEY:   nonmetal         MSC:   general chemistry

 

  1. Which element belongs to the transition metals?
A) palladium
B) sodium
C) calcium
D) iodine
E) helium

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    2.5

OBJ:    Locate the alkali metal and halogen groups on the periodic table.

TOP:    early atomic theory | periodic table

 

  1. Which of the following statements about different elements is/are true?

 

1. As is a metalloid and Se is a nonmetal.
2. Cu is a transition element and Ge is a metalloid.
3. Both F and I are halogens.

 

A) 1 only
B) 2 only
C) 3 only
D) 1 and 2
E) 1, 2, and 3

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    2.5

OBJ:    Recognize the portions of the periodic table that contain the metals, nonmetals, and metalloids (semimetals).                                    TOP:    early atomic theory | periodic table

MSC:   general chemistry

 

  1. Which of the following is a metalloid?
A) oxygen
B) hydrogen
C) silicon
D) carbon
E) copper

 

 

ANS:   C                     PTS:    1                      DIF:    easy                 REF:    2.5

OBJ:    Recognize the portions of the periodic table that contain the metals, nonmetals, and metalloids (semimetals).                                    TOP:    early atomic theory | periodic table

KEY:   metalloid         MSC:   general chemistry

 

  1. All of the following elements are best classified as metalloids except
A) Si.
B) Te.
C) As.
D) B.
E) Ga.

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    2.5

OBJ:    Recognize the portions of the periodic table that contain the metals, nonmetals, and metalloids (semimetals).                                    TOP:    early atomic theory | periodic table

KEY:   metalloid         MSC:   general chemistry

 

  1. Which formula is best described as a (condensed) structural formula?
A) C2B10H12
B) C6H11Cl
C) CH3CH2CH2CH2Cl
D) C12H22O11
E) C2H6O

 

 

ANS:   C                     PTS:    1                      DIF:    easy                 REF:    2.6

OBJ:    Determine whether a chemical formula is also a molecular formula.

TOP:    early atomic theory | chemical substance

 

  1. Which of the following is/are information that is unique to a space-filling molecular model?

 

1. The model shows the relative sizes of each element.
2. The model shows the charge distribution.
3. The model shows the types of bonds (single or multiple) connecting the atoms.

 

A) 1 only
B) 2 only
C) 3 only
D) 1 and 2
E) 1, 2, and 3

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    2.6

OBJ:    Determine whether a chemical formula is also a molecular formula.

TOP:    early atomic theory | chemical substance

 

  1. In a particular mass of KAu(CN)2, there are 8.87 ´ 1020 atoms of gold. What is the total number of atoms in this sample?
A) 1.77 ´ 1021
B) 2.66 ´ 1021
C) 5.32 ´ 1021
D) 4.44 ´ 1021
E) 3.55 ´ 1021

 

 

ANS:   C                     PTS:    1                      DIF:    easy                 REF:    2.6

OBJ:    Determine whether a chemical formula is also a molecular formula.

TOP:    early atomic theory | chemical substance                               KEY:   chemical formula

MSC:   general chemistry

 

  1. A sample of TNT, C7H5N3O6 , has 7.68 ´ 1021 nitrogen atoms. How many hydrogen atoms are there in this sample of TNT?
A) 1.54 ´ 1022
B) 10.24 ´ 1021
C) 1.28 ´ 1022
D) 7.68 ´ 1021
E) 1.79 ´ 1022

 

 

ANS:   C                     PTS:    1                      DIF:    easy                 REF:    2.6

OBJ:    Determine whether a chemical formula is also a molecular formula.

TOP:    early atomic theory | chemical substance                               KEY:   chemical formula

MSC:   general chemistry

 

  1. A 1.4-g sample of washing soda, Na2CO3 • 10H2O, has  carbon atoms. How many oxygen atoms are present in 1.4 g of washing soda?
A)
B)
C)
D)
E)

 

 

ANS:   D                     PTS:    1                      DIF:    easy                 REF:    2.6

OBJ:    Determine whether a chemical formula is also a molecular formula.

TOP:    early atomic theory | chemical substance                               KEY:   chemical formula

MSC:   general chemistry

 

  1. A sample of the mineral troegerite, (UO2)3(AsO4)2 • 12H2O, has 1.33 ´ 1021 U atoms. How many arsenic atoms are present in this sample of troegerite?
A) 2.00 ´ 1022
B) 1.60 ´ 1022
C) 2.66 ´ 1021
D) 6.65 ´ 1022
E) 8.87 ´ 1020

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    2.6

OBJ:    Determine whether a chemical formula is also a molecular formula.

TOP:    early atomic theory | chemical substance                               KEY:   chemical formula

MSC:   general chemistry

 

  1. An ion is formed
A) by either adding electrons to or subtracting electrons from the atom.
B) by either adding protons to or subtracting protons from the atom.
C) by either adding neutrons to or subtracting neutrons from the atom.
D) All of the above are true.
E) Two of the above are true.

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    2.6

OBJ:    Define ion, cation, and anion.            TOP:    early atomic theory | chemical substance

KEY:   chemical formula | ionic substance     MSC:   general chemistry

 

  1. The species Au+, Mg2+, and V3+ are all
A) anions.
B) isotopes.
C) isoelectronic.
D) allotropes.
E) cations.

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    2.6

OBJ:    Define ion, cation, and anion.            TOP:    early atomic theory | chemical substance

 

  1. The species that is formed when a molecule gains or loses an electron is called
A) an ion.
B) a metalloid.
C) an isotope.
D) an atom.
E) a metal.

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    2.6

OBJ:    Define ion, cation, and anion.            TOP:    early atomic theory | chemical substance

 

  1. Which of the following statements is true about one formula unit of SrBr2?
A) It is composed of one Sr atom and one Br2 molecule.
B) It is composed of one Sr atom and two Br atoms.
C) It is composed of one Sr2+ ion and one Br22– ion.
D) It is composed of one SrBr2 molecule.
E) It is composed of one Sr2+ ion and two Br ions.

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    2.6

OBJ:    Classify compounds as ionic or molecular.

TOP:    early atomic theory | chemical substance

 

  1. Aluminum(III) sulfite is an ionic compound formed from Al3+ and SO32-.  What is the correct way to represent the formula?
A) AlSO3+
B) Al(SO3)2
C) Al3+SO32-
D) Al2(SO3)3
E) Al7(SO3)10.5

 

 

ANS:   D                     PTS:    1                      DIF:    easy                 REF:    2.6

OBJ:    Write an ionic formula, given the ions..

TOP:    chemical formulas

 

  1. Chemical reactions between nonmetals and nonmetals primarily involve
A) sharing of electrons.
B) interactions between protons.
C) transfer of electrons.
D) interactions among protons, electrons, and neutrons.
E) interactions between protons and electrons.

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    2.6

OBJ:    Classify compounds as ionic or molecular.

TOP:    early atomic theory | chemical substance

KEY:   chemical formula | molecular substance                                 MSC:   general chemistry

 

  1. Which of the following is an ionic compound?
A) HOClO
B) NH3
C) CH3OH
D) N2O3
E) NH4CN

 

 

ANS:   E                     PTS:    1                      DIF:    moderate         REF:    2.6

OBJ:    Classify compounds as ionic or molecular.

TOP:    early atomic theory | chemical substance

KEY:   chemical formula | ionic substance     MSC:   general chemistry

 

  1. The formula of water, H2O, suggests
A) there is twice as much mass of hydrogen as oxygen in each molecule.
B) there are two oxygen atoms and one hydrogen atom per water molecule.
C) there is twice as much mass of oxygen as of hydrogen in each molecule.
D) there are two hydrogen atoms and one oxygen atom per water molecule.
E) none of these

 

 

ANS:   D                     PTS:    1                      DIF:    easy                 REF:    2.6

OBJ:    Define and provide examples for the term formula unit.

TOP:    early atomic theory | chemical substance                               KEY:   chemical formula

MSC:   general chemistry

 

  1. How many oxygen atoms are there in a formula unit of UO2(C2H3O2)2 • NH4C2H3O2 • 4H2O?
A) 4
B) 12
C) 21
D) 8
E) 10

 

 

ANS:   B                     PTS:    1                      DIF:    easy                 REF:    2.6

OBJ:    Define and provide examples for the term formula unit.

TOP:    early atomic theory | chemical substance

KEY:   chemical formula | ionic substance     MSC:   general chemistry

 

  1. What is the ratio of oxygen atoms to hydrogen atoms in the compound Fe4(PO4)3(OH)3 • 12H2O?
A) 15:3
B) 27:15
C) 27:27
D) 18:27
E) 25:17

 

 

ANS:   C                     PTS:    1                      DIF:    easy                 REF:    2.6

OBJ:    Define and provide examples for the term formula unit.

TOP:    early atomic theory | chemical substance

KEY:   chemical formula | ionic substance     MSC:   general chemistry

 

  1. What is the ratio of oxygen atoms to hydrogen atoms in the mineral carnotite, K2(UO2)3(VO4)2 • 3H2O?
A) 8:6
B) 8:3
C) 17:3
D) 9:6
E) 17:6

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    2.6

OBJ:    Define and provide examples for the term formula unit.

TOP:    early atomic theory | chemical substance

KEY:   chemical formula | ionic substance     MSC:   general chemistry

 

  1. Which statement is incorrect concerning the formation of ionic compounds?
A) Halogens tend to form anions with a charge of –1.
B) Alkali metals tend to form cations with a charge of +1.
C) Metals tend to form cations, while nonmetals tend to form anions.
D) Transition metals tend to form cations with a charge of +3.
E) Noble gases tend not to form ionic compounds.

 

 

ANS:   D                     PTS:    1                      DIF:    easy                 REF:    2.6

OBJ:    Specify the charge on all substances, ionic and molecular.

TOP:    early atomic theory | chemical substance

KEY:   chemical formula | ionic compound                                       MSC:   general chemistry

 

  1. The empirical formula of a salt consisting of Sr2+ and NO2 ions is
A) Sr2+NO2.
B) SrNO2.
C) Sr2NO2.
D) Sr2(NO2)3.
E) Sr(NO2)2.

 

 

ANS:   E                     PTS:    1                      DIF:    moderate         REF:    2.6

OBJ:    Write an ionic formula, given the ions.

TOP:    early atomic theory | chemical substance

 

  1. Which of the following molecules is a hydrocarbon?
A) H2O
B) CH3CH2CH3
C) C6H12O6
D) CH3CH2OH
E) CH3OCH3

 

 

ANS:   B                     PTS:    1                      DIF:    easy                 REF:    2.7

OBJ:    Explain what makes a molecule a hydrocarbon.

TOP:    early atomic theory | chemical substance

KEY:   organic compound                              MSC:   general chemistry

 

  1. Which of the following molecules contains the ether functional group?
A) CH3CH2NH2
B) CH3CH2OCH2CH3
C) CH3CH2OH
D) CH3CH2COOH
E) H2O

 

 

ANS:   B                     PTS:    1                      DIF:    easy                 REF:    2.7

OBJ:    Recognize some functional groups of organic molecules.

TOP:    early atomic theory | chemical substance

KEY:   organic compound                              MSC:   general chemistry

 

  1. Which of the following molecules contains the carboxylic acid functional group?
A) CH3CH2CH2OH
B) CH3CH2COCH2CH3
C) CH3NHCH3
D) CH3OCH2CH3
E) CH3CH2CH2COOH

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    2.7

OBJ:    Recognize some functional groups of organic molecules.

TOP:    early atomic theory | chemical substance

KEY:   organic compound                              MSC:   general chemistry

 

  1. Which of the following molecules contains the alcohol functional group?
A) C6H6
B) CH3OH
C) CH4
D) CH3OCH3
E) C2H2

 

 

ANS:   B                     PTS:    1                      DIF:    easy                 REF:    2.7

OBJ:    Recognize some functional groups of organic molecules.

TOP:    early atomic theory | chemical substance

KEY:   organic compound                              MSC:   general chemistry

 

  1. How many electrons does a barium ion have?
A) 56
B) 8
C) 54
D) 38
E) 2

 

 

ANS:   C                     PTS:    1                      DIF:    easy                 REF:    2.8

OBJ:    Learn the rules for predicting the charges of monatomic ions in ionic compounds.

TOP:    early atomic theory | chemical substance

KEY:   chemical formula | ionic substance     MSC:   general chemistry

 

  1. Which of the following statements is false?
A) A crystal of calcium fluoride has equal numbers of calcium ions and fluoride ions.
B) A sodium atom is most likely to ionize to form a cation of charge +1.
C) A sulfide ion has a total of 18 e.
D) A potassium ion has a total of 18 e.
E) The charge on a neutral chlorine atom is zero.

 

 

ANS:   A                     PTS:    1                      DIF:    moderate         REF:    2.8

OBJ:    Learn the rules for predicting the charges of monatomic ions in ionic compounds.

TOP:    early atomic theory | chemical substance

KEY:   chemical formula | ionic substance     MSC:   general chemistry

 

  1. As an ion, sodium has ______ electrons?
A) 24
B) 14
C) 11
D) 28
E) 10

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    2.8

OBJ:    Learn the rules for predicting the charges of monatomic ions in ionic compounds.

TOP:    early atomic theory | chemical substance

KEY:   chemical formula | ionic substance     MSC:   general chemistry

 

  1. How many electrons does a chloride ion have?
A) 17
B) 22
C) 15
D) 18
E) 2

 

 

ANS:   D                     PTS:    1                      DIF:    easy                 REF:    2.8

OBJ:    Learn the rules for predicting the charges of monatomic ions in ionic compounds.

TOP:    early atomic theory | chemical substance

KEY:   chemical formula | ionic substance     MSC:   general chemistry

 

  1. Which metals form cations with varying positive charges?
A) many transition metals
B) Zn and Al
C) Group 1 metals
D) Group 1 and Group 2 metals
E) Group 2 metals

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    2.8

OBJ:    Learn the rules for predicting the charges of monatomic ions in ionic compounds.

TOP:    early atomic theory | chemical substance

KEY:   chemical formula | ionic substance     MSC:   general chemistry

 

  1. Which of the following represents a known ion?
A) S2+
B) Sc4+
C) Sn2+
D) P4–
E) Na

 

 

ANS:   C                     PTS:    1                      DIF:    moderate         REF:    2.8

OBJ:    Learn the rules for predicting the charges of monatomic ions in ionic compounds.

TOP:    early atomic theory | chemical substance

KEY:   chemical formula | ionic substance     MSC:   general chemistry

 

  1. The formula for the sulfide ion is
A) SO42–.
B) SO32–.
C) S2O32–.
D) S2–.
E) HSO4.

 

 

ANS:   D                     PTS:    1                      DIF:    easy                 REF:    2.8

OBJ:    Apply the rules for naming monatomic ions.

TOP:    early atomic theory | chemical substance

KEY:   nomenclature of simple compound | ionic compound           MSC:   general chemistry

 

  1. The correct name for Sn2+ is
A) monotin ion.
B) tin(II) ion.
C) tin ion.
D) tin(I) ion.
E) tin.

 

 

ANS:   B                     PTS:    1                      DIF:    easy                 REF:    2.8

OBJ:    Apply the rules for naming monatomic ions.

TOP:    early atomic theory | chemical substance

 

  1. The formula of the perchlorate ion is
A) Cl2O3.
B) ClO2.
C) CN.
D) ClO4.
E) ClO.

 

 

ANS:   D                     PTS:    1                      DIF:    easy                 REF:    2.8

OBJ:    Learn the names and charges of common polyatomic ions.

TOP:    early atomic theory | chemical substance

KEY:   nomenclature of simple compound | ionic compound           MSC:   general chemistry

 

  1. The name of the SO42– ion is
A) persulfate.
B) thiosulfite.
C) sulfite.
D) sulfate.
E) sulfide.

 

 

ANS:   D                     PTS:    1                      DIF:    easy                 REF:    2.8

OBJ:    Learn the names and charges of common polyatomic ions.

TOP:    early atomic theory | chemical substance

KEY:   nomenclature of simple compound | ionic compound           MSC:   general chemistry

 

  1. The formulas of the nitrite, phosphate, and nitrate ions are represented, respectively, as
A) N3–, PO33–, NO3.
B) NO, P5–, NO3.
C) NO2, P3–, NO3.
D) NO3, PO2, N3–.
E) NO2, PO43–, NO3.

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    2.8

OBJ:    Learn the names and charges of common polyatomic ions.

TOP:    early atomic theory | chemical substance

KEY:   nomenclature | ionic compound         MSC:   general chemistry

 

  1. The formulas of the hydroxide ion, the nitrate ion, and the phosphate ion are represented, respectively, as
A) OH, NO2, PO33–.
B) OH, NO2, PO43–.
C) H, NO2, P3–.
D) H, NO3, P3–.
E) OH, NO3, PO43–.

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    2.8

OBJ:    Learn the names and charges of common polyatomic ions.

TOP:    early atomic theory | chemical substance

KEY:   nomenclature | ionic compound         MSC:   general chemistry

 

  1. All the following ions have the same charge except
A) sulfate.
B) dichromate.
C) chlorate.
D) sulfide.
E) sulfite.

 

 

ANS:   C                     PTS:    1                      DIF:    easy                 REF:    2.8

OBJ:    Learn the names and charges of common polyatomic ions.

TOP:    early atomic theory | chemical substance

KEY:   nomenclature of simple compound | ionic compound           MSC:   general chemistry

 

  1. All the following ions have the same charge except
A) oxide.
B) monohydrogen phosphate.
C) peroxide.
D) permanganate.
E) oxalate.

 

 

ANS:   D                     PTS:    1                      DIF:    easy                 REF:    2.8

OBJ:    Learn the names and charges of common polyatomic ions.

TOP:    early atomic theory | chemical substance

KEY:   nomenclature of simple compound | ionic compound           MSC:   general chemistry

 

  1. The formulas of the carbonate ion, the ammonium ion, and the chlorate ion are represented, respectively, as
A) CO32–, NH2, ClO3.
B) CO32–, NH4+, ClO3.
C) CO2, NH4+, ClO.
D) P3–, NH3+, ClO2.
E) CO32–, NH3+, ClO2.

 

 

ANS:   B                     PTS:    1                      DIF:    easy                 REF:    2.8

OBJ:    Learn the names and charges of common polyatomic ions.

TOP:    early atomic theory | chemical substance

KEY:   nomenclature of simple compound | ionic compound           MSC:   general chemistry

 

  1. The systematic name for BaH2 is
A) barium(II) hydrate.
B) barium hydride.
C) barium dihydrate.
D) barium dihydrogen.
E) barium dihydride.

 

 

ANS:   B                     PTS:    1                      DIF:    moderate         REF:    2.8

OBJ:    Name an ionic compound from its formula. (Example 2.4)

TOP:    early atomic theory | chemical substance

KEY:   nomenclature of simple compound | ionic compound           MSC:   general chemistry

 

  1. What is the name of the compound whose formula is Al2(SO4)3?
A) aluminum sulfate
B) dialuminum tri(sulfur tetraoxygen)
C) aluminum sulfide
D) aluminum persulfate
E) aluminum sulfite

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    2.8

OBJ:    Name an ionic compound from its formula. (Example 2.4)

TOP:    early atomic theory | chemical substance

KEY:   nomenclature of simple compound | ionic compound           MSC:   general chemistry

 

  1. The correct name for FeO is
A) iron(I) oxide.
B) iron oxide.
C) iron monoxide.
D) iron(II) oxide.
E) iron(III) oxide.

 

 

ANS:   D                     PTS:    1                      DIF:    easy                 REF:    2.8

OBJ:    Name an ionic compound from its formula. (Example 2.4)

TOP:    early atomic theory | chemical substance

KEY:   nomenclature of simple compound | ionic compound           MSC:   general chemistry

 

  1. What is the formula for the chloride of praseodymium(III)?
A) Pr2(ClO2)3
B) Pr(ClO4)2
C) Pr3Cl
D) PrCl3
E) Pr(ClO3)3

 

 

ANS:   D                     PTS:    1                      DIF:    moderate         REF:    2.8

OBJ:    Write the formula of an ionic compound from its name. (Example 2.5)

TOP:    early atomic theory | chemical substance

KEY:   nomenclature of simple compound | ionic compound           MSC:   general chemistry

 

  1. What is the correct formula for bismuth(III) sulfite?
A) BiSO3
B) Bi2SO3
C) Bi3(SO3)2
D) Bi2(SO3)3
E) Bi(SO3)2

 

 

ANS:   D                     PTS:    1                      DIF:    moderate         REF:    2.8

OBJ:    Write the formula of an ionic compound from its name.

TOP:    chemical formulas

 

  1. What is the correct name for Sc2O3?
A) manganese(III) oxide
B) manganese oxide
C) dimanganese trioxide
D) manganese trioxide
E) dimanganese(II) oxide

 

 

ANS:   A                     PTS:    1                      DIF:    moderate         REF:    2.8

OBJ:    Write the formula of an ionic compound from its name.

TOP:    chemical formulas

 

  1. What is the formula for calcium nitride?
A) CaNO2
B) Ca(NO3)2
C) Ca(NO2)2
D) Ca3N2
E) Ca2N3

 

 

ANS:   D                     PTS:    1                      DIF:    moderate         REF:    2.8

OBJ:    Write the formula of an ionic compound from its name. (Example 2.5)

TOP:    early atomic theory | chemical substance

KEY:   nomenclature of simple compound | ionic compound           MSC:   general chemistry

 

  1. The formula of magnesium sulfide is
A) MgS.
B) MgSO2.
C) MgSO4.
D) MgSO3.
E) Mg(SO4)2.

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    2.8

OBJ:    Write the formula of an ionic compound from its name. (Example 2.5)

TOP:    early atomic theory | chemical substance

KEY:   nomenclature of simple compound | ionic compound           MSC:   general chemistry

 

  1. What is the formula of magnesium nitrite?
A) Mg(NO2)2
B) Mg3N2
C) Mg2(NO2)2
D) Mg2N3
E) Mg(NO2)3

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    2.8

OBJ:    Write the formula of an ionic compound from its name. (Example 2.5)

TOP:    early atomic theory | chemical substance

KEY:   nomenclature of simple compound | ionic compound           MSC:   general chemistry

 

  1. The formula for aluminum bromide is
A) AlB.
B) AlBr.
C) Al2Br3.
D) AlBr2.
E) AlBr3.

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    2.8

OBJ:    Write the formula of an ionic compound from its name. (Example 2.5)

TOP:    early atomic theory | chemical substance

KEY:   nomenclature of simple compound | ionic compound           MSC:   general chemistry

 

  1. The chemical formula for iron(III) sulfide is
A) Fe3(SO4)2.
B) Fe2S3.
C) Fe3(SO3)2.
D) Fe2(SO3)3.
E) Fe2(SO4)3.

 

 

ANS:   B                     PTS:    1                      DIF:    easy                 REF:    2.8

OBJ:    Write the formula of an ionic compound from its name. (Example 2.5)

TOP:    early atomic theory | chemical substance

KEY:   nomenclature of simple compound | ionic compound           MSC:   general chemistry

 

  1. The formula for aluminum sulfate is
A) Al2(SO3)3.
B) Al2S3.
C) Al2(SO4)3.
D) Al3S2.
E) Al3(SO4)2.

 

 

ANS:   C                     PTS:    1                      DIF:    easy                 REF:    2.8

OBJ:    Write the formula of an ionic compound from its name. (Example 2.5)

TOP:    early atomic theory | chemical substance

KEY:   nomenclature of simple compound | ionic compound           MSC:   general chemistry

 

  1. The formula for copper(II) phosphate is
A) Co3(PO4)2.
B) CuPO4.
C) Co2(PO4)3.
D) Cu2(PO4)3.
E) Cu3(PO4)2.

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    2.8

OBJ:    Write the formula of an ionic compound from its name. (Example 2.5)

TOP:    early atomic theory | chemical substance

KEY:   nomenclature of simple compound | ionic compound           MSC:   general chemistry

 

  1. Choose the name–formula pair that does not match.
A) calcium fluoride, CaF2
B) iron(III) oxide, Fe2O3
C) aluminum oxide, Al2O3
D) potassium permanganate, K2MnO4
E) sodium sulfite, Na2SO3

 

 

ANS:   D                     PTS:    1                      DIF:    easy                 REF:    2.8

OBJ:    Write the formula of an ionic compound from its name. (Example 2.5)

TOP:    early atomic theory | chemical substance

KEY:   nomenclature of simple compound | ionic compound           MSC:   general chemistry

 

  1. Choose the name–formula pair that does not match.
A) calcium hydride, CaH2
B) ammonium hydrogen carbonate, NH4CO3
C) sodium chlorite, NaClO2
D) calcium hydroxide, Ca(OH)2
E) nitric acid, HNO3

 

 

ANS:   B                     PTS:    1                      DIF:    easy                 REF:    2.8

OBJ:    Write the formula of an ionic compound from its name. (Example 2.5)

TOP:    early atomic theory | chemical substance

KEY:   nomenclature of simple compound | ionic compound           MSC:   general chemistry

 

  1. The formula for aluminum fluoride is
A) AlF3.
B) AlF.
C) Al2F.
D) AlF4.
E) AlF2.

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    2.8

OBJ:    Write the formula of an ionic compound from its name. (Example 2.5)

TOP:    early atomic theory | chemical substance

KEY:   nomenclature of simple compound | ionic compound           MSC:   general chemistry

 

  1. The formula for potassium carbonate is
A) P2C.
B) K2CO3.
C) Po2CO3.
D) P2CO3.
E) K2C.

 

 

ANS:   B                     PTS:    1                      DIF:    easy                 REF:    2.8

OBJ:    Write the formula of an ionic compound from its name. (Example 2.5)

TOP:    early atomic theory | chemical substance

KEY:   nomenclature of simple compound | ionic compound           MSC:   general chemistry

 

  1. The formula for magnesium nitride is
A) Mg2N3.
B) Mg3N2.
C) MgNO2.
D) Mg(NO2)2.
E) MgN.

 

 

ANS:   B                     PTS:    1                      DIF:    easy                 REF:    2.8

OBJ:    Write the formula of an ionic compound from its name. (Example 2.5)

TOP:    early atomic theory | chemical substance

KEY:   nomenclature of simple compound | ionic compound           MSC:   general chemistry

 

  1. What is the subscript of potassium in the formula for potassium sulfate?
A) 2
B) 5
C) 3
D) 4
E) 1

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    2.8

OBJ:    Write the formula of an ionic compound from its name. (Example 2.5)

TOP:    early atomic theory | chemical substance

KEY:   nomenclature of simple compound | ionic compound           MSC:   general chemistry

 

  1. What is the formula for sodium peroxide?
A) Na3O2
B) NaO
C) Na2O
D) NaO2
E) Na2O2

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    2.8

OBJ:    Write the formula of an ionic compound from its name. (Example 2.5)

TOP:    early atomic theory | chemical substance

KEY:   nomenclature of simple compound | ionic compound           MSC:   general chemistry

 

  1. What is the formula for the chlorate of gadolinium(III)?
A) Gd(ClO4)2
B) GdCl2
C) Gd2(ClO3)3
D) GdCl3
E) Gd(ClO3)3

 

 

ANS:   E                     PTS:    1                      DIF:    moderate         REF:    2.8

OBJ:    Write the formula of an ionic compound from its name. (Example 2.5)

TOP:    early atomic theory | chemical substance

KEY:   nomenclature of simple compound | ionic compound           MSC:   general chemistry

 

  1. What is the formula for the nitride of samarium(III)?
A) SmN
B) Sm2N3
C) Sm(NO3)2
D) Sm(NO3)3
E) Sm(NO2)3

 

 

ANS:   A                     PTS:    1                      DIF:    moderate         REF:    2.8

OBJ:    Write the formula of an ionic compound from its name. (Example 2.5)

TOP:    early atomic theory | chemical substance

KEY:   nomenclature of simple compound | ionic compound           MSC:   general chemistry

 

  1. The correct name for LiCl is
A) monolithium chloride.
B) lithium chloride.
C) lithium(I) chloride.
D) monolithium monochloride.
E) lithium monochloride.

 

 

ANS:   B                     PTS:    1                      DIF:    easy                 REF:    2.8

OBJ:    Name a binary compound from its formula. (Example 2.6)

TOP:    early atomic theory | chemical substance

KEY:   nomenclature of simple compound | ionic compound           MSC:   general chemistry

 

  1. The chemical name for the model  is
A) dinitrogen tetroxide.
B) nitrogen tetroxide.
C) nitrogen oxide.
D) nitric oxide.
E) nitrogen trioxide

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    2.8

OBJ:    Name a binary molecular compound from its molecular model. (Example 2.8)

TOP:    early atomic theory | chemical substance

KEY:   nomenclature of simple compound | binary molecular compound

MSC:   general chemistry

 

  1. The chemical name for the binary, non-ionic molecule with the formula PBr5 is
A) phosphorus pentabromide.
B) monophosphorus bromide.
C) phosphide pentabromide.
D) phosphorus pentabromine.
E) monophosphorus pentabromine.

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    2.8

OBJ:    Name a binary molecular compound from its molecular model.

TOP:    early atomic theory | chemical substance

 

  1. The formula for chloric acid is
A) HClO2.
B) HClO.
C) HCl.
D) HClO4.
E) HClO3.

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    2.8

OBJ:    Learn the approach for naming binary acids and oxoacids.

TOP:    early atomic theory | chemical substance

KEY:   nomenclature of simple compound | acid                              MSC:   general chemistry

 

  1. Which name–formula pair is incorrect?
A) HI, hydroiodic acid
B) H2SO3, sulfurous acid
C) H2SO4, sulfuric acid
D) HClO4, perchloric acid
E) HNO3, carbonic acid

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    2.8

OBJ:    Learn the approach for naming binary acids and oxoacids.

TOP:    early atomic theory | chemical substance

 

  1. Which name–formula pair is incorrect?
A) hypochlorous acid, HClO2
B) titanium(IV) carbide, TiC
C) strontium nitride, Sr3N2
D) magnesium sulfate heptahydrate, MgSO4·7H2O
E) dinitrogen tetroxide, N2O4

 

 

ANS:   A                     PTS:    1                      DIF:    difficult           REF:    2.8

OBJ:    Learn the approach for naming binary acids and oxoacids.

TOP:    early atomic theory | chemical substance

KEY:   nomenclature of simple compound    MSC:   general chemistry

 

  1. The oxoanion that comes from nitrous acid is
A) N2O3.
B) NO2.
C) HNO3.
D) NO.
E) NO3.

 

 

ANS:   B                     PTS:    1                      DIF:    easy                 REF:    2.8

OBJ:    Write the name and formula of an anion from the acid. (Example 2.9)

TOP:    early atomic theory | chemical substance

KEY:   nomenclature of simple compound | acid                              MSC:   general chemistry

 

  1. For the following balanced chemical equation, which substance represents the catalyst?

2CO(g) + 2NO(g)  2CO2(g) + N2(g)

A) NO(g)
B) CO(g)
C) CO2(g)
D) N2(g)
E) Rh(s)

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    2.9

OBJ:    Identify the reactants and products in a chemical equation.

TOP:    early atomic theory | chemical equation                                 KEY:   writing equation

MSC:   general chemistry

 

  1. What is the balanced chemical equation that represents the following reaction?
A) 6H + 2N ® 2NH3
B) 6H + 2N ® 2HN3
C) 2N + 2H3 ® 2H3N
D) 6H + 2N ® 2N3H
E) 3H2 + N2 ® 2NH3

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    2.9

OBJ:    Identify the reactants and products in a chemical equation.

TOP:    early atomic theory | chemical equation                                 KEY:   writing equation

MSC:   general chemistry

 

  1. In the following chemical equation, what is the reactant?

CuSO4·5H2O(s) ® CuO(s) + SO3(g) + 5H2O(l)

A) CuSO4·5H2O(s)
B) H2O(l)
C) CuO(s)
D) SO3(g)
E) CuSO4(s)

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    2.9

OBJ:    Identify the reactants and products in a chemical equation.

TOP:    early atomic theory | chemical equation                                 KEY:   writing equation

MSC:   general chemistry

 

  1. Which is a correct balanced chemical equation corresponding to the following description of a chemical reaction?

Hydrochloric acid reacts with magnesium metal to produce aqueous magnesium chloride and hydrogen gas.

A) 2HCl(aq) + Mg(s) ® MgCl2(aq) + 2H(g)
B) 2HCl(aq) + Mg(s) ® MgCl2(aq) + H2(g)
C) 2HCl(aq) + Mg(s) ® MgCl(aq) + H2(g)
D) 2HCl(aq) + Mg(aq) ® MgCl2(s) + H2(g)
E) HCl(aq) + Mg(s) ® MgCl(aq) + H(g)

 

 

ANS:   B                     PTS:    1                      DIF:    moderate         REF:    2.9

OBJ:    Write chemical equations using appropriate phase labels,symbols of reactions conditions, and the presence of a catalyst.                    TOP:    early atomic theory | chemical equation

KEY:   balancing chemical equation              MSC:   general chemistry

 

  1. Sulfuric acid reacts with aqueous sodium hydroxide to produce aqueous sodium sulfate and liquid water.  Which is the correct balanced chemical equation for this reaction description?
A) H2SO4(aq) + 2NaOH(aq) ® Na2S(aq) + 2H2O(l) + 2O2(g)
B) H2S(aq) + 2NaOH(aq) ® Na2S(aq) + 2H2O(l)
C) H2SO4(aq) + NaOH(aq) ® NaSO4(aq) + H2O(g)
D) H2SO4(aq) + 2NaOH(aq) ® Na2SO4(aq) + 2H2O(l)
E) H2SO4(aq) + (NaOH)2(aq) ® Na2SO4(aq) + 2H2O(l)

 

 

ANS:   D                     PTS:    1                      DIF:    moderate         REF:    2.9

OBJ:    Write chemical equations using appropriate phase labels,symbols of reactions conditions, and the presence of a catalyst.                    TOP:    early atomic theory | chemical reaction

 

  1. How many of the following statements are true concerning chemical equations?
  2.   Coefficients can be fractions.
  3. Subscripts can be fractions.

III.    Coefficients represent the relative masses of the reactants and/or products.

  1. Changing the subscripts to balance an equation can be done only once.
  2. Atoms are conserved when balancing chemical equations.
A) 3
B) 4
C) 2
D) 5
E) 1

 

 

ANS:   C                     PTS:    1                      DIF:    moderate         REF:    2.10

OBJ:    Master techniques for balancing chemical equations. (Example 2.12)

TOP:    early atomic theory | chemical equation

KEY:   balancing chemical equation              MSC:   general chemistry

 

  1. When the following equation is balanced with lowest whole-number coefficients, what is the coefficient for NO(g)?

___NH3(g) + ___O2(g) ® ___NO(g) + ___H2O(g)

A) 3
B) 2
C) 5
D) 4
E) 1

 

 

ANS:   D                     PTS:    1                      DIF:    moderate         REF:    2.10

OBJ:    Master techniques for balancing chemical equations. (Example 2.12)

TOP:    early atomic theory | chemical equation

KEY:   balancing chemical equation              MSC:   general chemistry

 

  1. The complete combustion of propane, C3H8, yields carbon dioxide and water:

The smallest whole-number coefficient of oxygen in the balanced equation is

A) 6.
B) 3.
C) 7.
D) 4.
E) 5.

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    2.10

OBJ:    Master techniques for balancing chemical equations. (Example 2.12)

TOP:    early atomic theory | chemical equation

KEY:   balancing chemical equation              MSC:   general chemistry

 

  1. The complete combustion of butane, C4H10, yields carbon dioxide and water:

The smallest whole-number coefficient of oxygen in the balanced equation is

A) 12.
B) 14.
C) 10.
D) 11.
E) 13.

 

 

ANS:   E                     PTS:    1                      DIF:    moderate         REF:    2.10

OBJ:    Master techniques for balancing chemical equations. (Example 2.12)

TOP:    early atomic theory | chemical equation

KEY:   balancing chemical equation              MSC:   general chemistry

 

  1. The products of the combustion of acetaldehyde with oxygen are shown in the following equation:

__ CH3CHO + __ O2 ® __ CO2 + __ H2O

When properly balanced, the equation indicates that ____ molecules of O2 are required to burn 2 molecules of CH3CHO.

A) 2
B) 6
C) 4
D) 3
E) 5

 

 

ANS:   E                     PTS:    1                      DIF:    moderate         REF:    2.10

OBJ:    Master techniques for balancing chemical equations. (Example 2.12)

TOP:    early atomic theory | chemical equation

KEY:   balancing chemical equation              MSC:   general chemistry

 

  1. Energy from the following reaction provided the lift for the moon lander:

__ (CH3)2N2H2 + __ N2O4 ® __ N2 + __ H2O + __ CO2

When the equation is balanced, the smallest whole-number coefficient of nitrogen is

A) 5.
B) 4.
C) 1.
D) 3.
E) 2.

 

 

ANS:   D                     PTS:    1                      DIF:    difficult           REF:    2.10

OBJ:    Master techniques for balancing chemical equations. (Example 2.12)

TOP:    early atomic theory | chemical equation

KEY:   balancing chemical equation              MSC:   general chemistry

 

  1. Treatment of sodium borohydride with sulfuric acid is a convenient method for the preparation of diborane:

__ NaBH4 + __ H2SO4 ® __ B2H6 + __ H2 + __Na2SO4

When the equation is balanced, the lowest whole number coefficient for hydrogen is

A) 5.
B) 2.
C) 4.
D) 1.
E) 3.

 

 

ANS:   B                     PTS:    1                      DIF:    difficult           REF:    2.10

OBJ:    Master techniques for balancing chemical equations. (Example 2.12)

TOP:    early atomic theory | chemical equation

KEY:   balancing chemical equation              MSC:   general chemistry

 

  1. All the following may change during a chemical reaction except
A) the total volume of the system.
B) the density of the system.
C) the temperature of the system.
D) the total number of atoms in the system.
E) the total number of molecules in the system.

 

 

ANS:   D                     PTS:    1                      DIF:    easy                 REF:    2.10

OBJ:    Master techniques for balancing chemical equations. (Example 2.12)

TOP:    early atomic theory | chemical equation

KEY:   balancing chemical equation              MSC:   general chemistry

 

  1. The complete combustion of phenylhydrazine, C6H5NHNH2, with the oxidizer dinitrogen tetraoxide is shown in the following equation:

__ C6H5NHNH2 + __ N2O4 ® __ CO2 + __ H2O + __ N2

When this equation is balanced, the sum of all the coefficients (using smallest whole numbers) is

A) 30.
B) 20.
C) 25.
D) 10.
E) 15.

 

 

ANS:   B                     PTS:    1                      DIF:    difficult           REF:    2.10

OBJ:    Master techniques for balancing chemical equations. (Example 2.12)

TOP:    early atomic theory | chemical equation

KEY:   balancing chemical equation              MSC:   general chemistry

 

  1. The complete combustion of pentane yields carbon dioxide and water. When the equation

__ C5H12(l) + __ O2(g) ® __ CO2(g) + __ H2O(l)

is balanced, the ratio of the coefficient of CO2 to the coefficient of O2 is

A) 8:5.
B) 8:6.
C) 6:5.
D) 5:6.
E) 5:8.

 

 

ANS:   E                     PTS:    1                      DIF:    moderate         REF:    2.10

OBJ:    Master techniques for balancing chemical equations. (Example 2.12)

TOP:    early atomic theory | chemical equation

KEY:   balancing chemical equation              MSC:   general chemistry

 

  1. A reaction occurs between sodium carbonate and hydrochloric acid, producing sodium chloride, carbon dioxide, and water. Which is the correct set of coefficients, respectively, for the balanced reaction?
A) 3   6   6   3   4
B) 8   6   5   10   5
C) 5   10   10   5   5
D) 1   2   2   1   1
E) none of these

 

 

ANS:   D                     PTS:    1                      DIF:    difficult           REF:    2.10

OBJ:    Master techniques for balancing chemical equations. (Example 2.12)

TOP:    early atomic theory | chemical equation

KEY:   balancing chemical equation              MSC:   general chemistry

 

  1. When the equation

__ (CH3)2NNH2 + __ N2O4 ® __ N2 + __ H2O + __ CO2

is balanced, the sum of all the coefficients (simplest whole number) is

A) 13.
B) 12.
C) 9.
D) 10.
E) 11.

 

 

ANS:   B                     PTS:    1                      DIF:    difficult           REF:    2.10

OBJ:    Master techniques for balancing chemical equations. (Example 2.12)

TOP:    early atomic theory | chemical equation

KEY:   balancing chemical equation              MSC:   general chemistry

 

  1. When the equation

__ C5H6N2OS(s) + __ O2(g) ® __ CO2(g) + __ H2O(l) + __ N2(g) + __ SO2(g)

is balanced, the sum of all the coefficients (simplest whole number) is

A) 19.
B) 20.
C) 24.
D) 18.
E) 21.

 

 

ANS:   D                     PTS:    1                      DIF:    difficult           REF:    2.10

OBJ:    Master techniques for balancing chemical equations. (Example 2.12)

TOP:    early atomic theory | chemical equation

KEY:   balancing chemical equation              MSC:   general chemistry

 

  1. Ammonia can be made by reaction of water with magnesium nitride:

__ Mg3N2(s) + __ H2O(l) ® __ Mg(OH)2(s) + __ NH3(g)

When the equation is properly balanced, the sum of the coefficients is

A) 6.
B) 14.
C) 12.
D) 9.
E) 8.

 

 

ANS:   C                     PTS:    1                      DIF:    moderate         REF:    2.10

OBJ:    Master techniques for balancing chemical equations. (Example 2.12)

TOP:    early atomic theory | chemical equation

KEY:   balancing chemical equation              MSC:   general chemistry

 

  1. Which one of the following equations is properly balanced?
A) Sn + 4HNO3 ® SnO2 + 4NO2 + 2H2O
B) 2Na2SO4 + 3Bi(NO3)3 ® Bi2(SO4)3 + 9NaNO3
C) CH3CHO + 3O2 ® 2CO2 + 2H2O
D) NH4NO3 ® 2H2O + N2
E) Na2CO3 + 2H2SO4 ® Na2SO4 + 2H2O + CO2

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    2.10

OBJ:    Determine if a chemical reaction is balanced.

TOP:    early atomic theory | chemical equation

KEY:   balancing chemical equation              MSC:   general chemistry

 

  1. Which of the following chemical equations is not balanced?
A) NH4NO3 ® N2O + 2H2O
B) C12H22O11 ® 12C + 11H2O
C) 2NH4SCN + Ba(OH)2 • 8H2O ® 2NH3 + 10H2O + Ba(SCN)2
D) (NH4)2Cr2O7 ® N2O + Cr2O3 + 4H2O
E) 2Mg + CO2 ® 2MgO + C

 

 

ANS:   D                     PTS:    1                      DIF:    easy                 REF:    2.10

OBJ:    Determine if a chemical reaction is balanced.

TOP:    early atomic theory | chemical equation

KEY:   balancing chemical equation              MSC:   general chemistry

 

  1. Which of the following equations is not balanced?
A) 2Sb2OS2 + 10O2 ® 2Sb2O5 + 4SO3
B) (NH4)2Cr2O7 ® N2 + 4H2O + Cr2O3
C) C12H22O11 + 12O2 ® 12CO2 + 11H2O
D) 2NaCl + Pb(NO3)2 ® PbCl2 + 2NaNO3
E) Fe3O4 + 3CO ® 3Fe + 3CO2

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    2.10

OBJ:    Determine if a chemical reaction is balanced.

TOP:    early atomic theory | chemical equation

KEY:   balancing chemical equation              MSC:   general chemistry

Chapter 4 – Chemical Reactions

 

  1. Which of the following concerning electrolytes and nonelectrolytes is/are true?
1. Some molecular substances are electrolytes.
2. All electrolytes are ionic substances.
3. Strong electrolytes partially ionize in solution.

 

A) 1 only
B) 2 only
C) 3 only
D) 1 and 3
E) 2 and 3

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    4.1

OBJ:    Explain how an electrolyte makes a solution electrically conductive.

TOP:    chemical reactions | ions in aqueous solution

 

  1. Which of the following correctly describes one or more of the differences between a strong and weak electrolyte?
A) A strong electrolyte partially ionizes in solution and a weak electrolyte completely ionizes in solution.
B) Strong electrolytes are all classified as soluble ionic substances and weak electrolytes are all classified as soluble molecular substances.
C) Strong electrolytes produce more ions per mole of substance in solution than weak electrolytes.
D) Weak electrolytes inhibit the flow of electricity.
E) Strong electrolytes are weak conductors of electricity.

 

 

ANS:   C                     PTS:    1                      DIF:    easy                 REF:    4.1

OBJ:    Give examples of substances that are electrolytes.

TOP:    chemical reactions | ions in aqueous solution

 

  1. Which of the following is a nonelectrolyte in aqueous solution?
A) NH4F
B) NH4Cl
C) NaHS
D) CH4
E) Na2S

 

 

ANS:   D                     PTS:    1                      DIF:    moderate         REF:    4.1

OBJ:    Define nonelectrolyte and provide an example of a molecular substance that is a nonelectrolyte.    TOP:            chemical reactions | ions in aqueous solution

KEY:   electrolyte | nonelectrolyte                 MSC:   general chemistry

 

  1. Which of the following solutions would be expected to be the best conductor of an electric current at room temperature?
A) 0.10 M Na2SO4
B) 1.0 M CH3COOH
C) 0.10 M NaCl
D) 0.10 M CO(NH2)2
E) 0.10 M CH3COOH

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    4.1

OBJ:    Compare the properties of solutions that contain strong electrolytes and weak electrolytes.            TOP:            chemical reactions | ions in aqueous solution

KEY:   electrolyte       MSC:   general chemistry

 

  1. Which of the following solutes, dissolved in 1000 g of water, would provide the greatest number of particles?
A) 0.030 mol of urea, CO(NH2)2
B) 0.030 mol of ammonium nitrate, NH4NO3
C) 0.030 mol of barium chloride, BaCl2
D) 0.030 mol of acetic acid, CH3COOH
E) 0.030 mol of calcium sulfate, CaSO4

 

 

ANS:   C                     PTS:    1                      DIF:    moderate         REF:    4.1

OBJ:    Compare the properties of solutions that contain strong electrolytes and weak electrolytes.            TOP:            chemical reactions | ions in aqueous solution

KEY:   electrolyte       MSC:   general chemistry

 

  1. Which of the following aqueous solutions would be expected to be the best conductor of an electric current at room temperature?
A) 0.10 M CH3COOH
B) 0.10 M HCl
C) 0.10 M Na2SO4
D) 0.10 M NaCl
E) 0.10 M H3PO4

 

 

ANS:   C                     PTS:    1                      DIF:    moderate         REF:    4.1

OBJ:    Compare the properties of solutions that contain strong electrolytes and weak electrolytes.            TOP:            chemical reactions | ions in aqueous solution

KEY:   electrolyte       MSC:   general chemistry

 

  1. Which of the following ions is most likely to form an insoluble sulfate?
A) Ca2+
B) Cl
C) K+
D) Li+
E) S2–

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    4.1

OBJ:    Learn the solubility rules for ionic compounds.

TOP:    chemical reactions | ions in aqueous solution KEY:              solubility

MSC:   general chemistry

 

  1. Which of the following compounds is soluble in water?
A) Ga2O3
B) Na3P
C) ZnS
D) Hg2Cl2
E) CdS

 

 

ANS:   B                     PTS:    1                      DIF:    easy                 REF:    4.1

OBJ:    Use the solubility rules. (Example 4.1)

TOP:    chemical reactions | ions in aqueous solution

 

  1. Which of the following compounds is insoluble in water?
A) FeCO3
B) Li2CO3
C) (NH4)2CO3
D) K2CO3
E) Na2CO3

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    4.1

OBJ:    Use the solubility rules. (Example 4.1)

TOP:    chemical reactions | ions in aqueous solution KEY:              solubility rules

MSC:   general chemistry

 

  1. Which of the following compounds is insoluble in water?
A) Hg2SO4
B) FeSO4
C) Li2SO4
D) (NH4)2SO4
E) Cr2(SO4)3

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    4.1

OBJ:    Use the solubility rules. (Example 4.1)

TOP:    chemical reactions | ions in aqueous solution KEY:              solubility rules

MSC:   general chemistry

 

  1. Which of the following compounds is soluble in water?
A) PbCl2
B) PbBr2
C) CaSO4
D) Ca(NO3)2
E) HgBr2

 

 

ANS:   D                     PTS:    1                      DIF:    moderate         REF:    4.1

OBJ:    Use the solubility rules. (Example 4.1)

TOP:    chemical reactions | ions in aqueous solution

 

  1. Which of the following compounds is insoluble in water?
A) NH4I
B) RbI
C) CuCl2
D) AgI
E) LiI

 

 

ANS:   D                     PTS:    1                      DIF:    moderate         REF:    4.1

OBJ:    Use the solubility rules. (Example 4.1)

TOP:    chemical reactions | ions in aqueous solution KEY:              solubility rules

MSC:   general chemistry

 

  1. Which of the following concerning electrolytes and the solubility rules is/are true?

 

1. The solubility rules apply only to ionic substances.
2. All soluble ionic compounds are considered strong electrolytes.
3. The solubility rules apply to aqueous and non-aqueous solutions.

 

A) 1 only
B) 2 only
C) 3 only
D) 1 and 2
E) 1, 2, and 3

 

 

ANS:   D                     PTS:    1                      DIF:    easy                 REF:    4.1

OBJ:    Use the solubility rules.

TOP:    chemical reactions | ions in aqueous solution

 

  1. A student is given a sample in lab that contains one of the ions listed below. After adding a few drops of AgNO3 solution to a portion of the unknown sample, the student observed a grayish precipitate. After adding a few drops of Mg(NO3)2 solution to another portion of the unknown sample, the student got a black precipitate. Based on these observations, what is the only possible ion in this student’s sample?
A) Cl
B) F
C) C2H3O2
D) S2–
E) SO42–

 

 

ANS:   D                     PTS:    1                      DIF:    difficult           REF:    4.1

OBJ:    Use the solubility rules. (Example 4.1)

TOP:    chemical reactions | ions in aqueous solution KEY:              solubility rules

MSC:   general chemistry

 

  1. Which anion will form a precipitate with Rb+?
A) Cl
B) SO42–
C) C2H3O2
D) S2–
E) none of the above

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    4.1

OBJ:    Use the solubility rules. (Example 4.1)

TOP:    chemical reactions | ions in aqueous solution

 

  1. Which anion will form a precipitate with Ca2+?
A) Cl
B) SO42–
C) C2H3O2
D) Br
E) none of the above

 

 

ANS:   B                     PTS:    1                      DIF:    easy                 REF:    4.1

OBJ:    Use the solubility rules. (Example 4.1)

TOP:    chemical reactions | ions in aqueous solution

 

  1. Identify the spectator ions in the following reaction.

Ca2+(aq) + 2NO3(aq) + 2Na+(aq) + CO32–(aq) ® CaCO3(s) + 2Na+(aq) + NO3(aq)

A) NO3 and CO32–
B) Ca2+ and Na+
C) Ca2+ and CO32–
D) Ca2+ and NO3
E) Na+ and NO3

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    4.2

OBJ:    From the complete ionic equation, write the net ionic equation.

TOP:    chemical reactions | ions in aqueous solution

KEY:   ionic equation | net ionic equation      MSC:   general chemistry

 

  1. Which of the following concerning molecular and ionic equations is/are correct?

 

1. Molecular equations cannot be written for reactions involving ionic substances.
2. Charge must be balanced in a properly balanced net ionic reaction.
3. In a balanced complete ionic reaction only the strong electrolytes are shown as the individual aqueous ions.

 

A) 1 only
B) 2 only
C) 3 only
D) 1 and 3
E) 2 and 3

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    4.2

OBJ:    From the complete ionic equation, write the net ionic equation.

TOP:    chemical reactions | ions in aqueous solution

 

  1. Which of the following would not be depicted as the individual ions on the reactant side of a complete ionic reaction?
A) RbOH
B) HBr
C) Cu(NO3)2
D) CuCO3
E) Ti(NO3)3

 

 

ANS:   D                     PTS:    1                      DIF:    easy                 REF:    4.2

OBJ:    From the complete ionic equation, write the net ionic equation.

TOP:    chemical reactions | ions in aqueous solution

 

  1. Which of the following would not be depicted as the individual ions on the reactant side of a complete ionic reaction?
A) LiOH
B) HCl
C) ZnBr2
D) CH3COOH
E) FeI3

 

 

ANS:   D                     PTS:    1                      DIF:    easy                 REF:    4.2

OBJ:    From the complete ionic equation, write the net ionic equation.

TOP:    chemical reactions | ions in aqueous solution

 

  1. Identify the spectator ion(s) in the following reaction.

Cu(OH)2(s) + 2H+(aq) + 2Cl(aq) ® Cu2+(aq) + 2Cl(aq) + 2H2O(l)

A) Cu2+ and Cl
B) Cu2+
C) Cu(OH)2
D) Cl
E) H+ and Cl

 

 

ANS:   D                     PTS:    1                      DIF:    easy                 REF:    4.2

OBJ:    From the complete ionic equation, write the net ionic equation.

TOP:    chemical reactions | ions in aqueous solution

KEY:   ionic equation | net ionic equation      MSC:   general chemistry

 

  1. Identify the spectator ion(s) in the following reaction.

Zn(OH)2(s) + 2K+(aq) + 2OH(aq) ® 2K+(aq) + Zn(OH)4(aq)

A) K+ and Zn(OH)42–
B) K+
C) Zn(OH)2
D) Zn(OH)42–
E) K+ and OH

 

 

ANS:   B                     PTS:    1                      DIF:    easy                 REF:    4.2

OBJ:    From the complete ionic equation, write the net ionic equation.

TOP:    chemical reactions | ions in aqueous solution

KEY:   ionic equation | net ionic equation      MSC:   general chemistry

 

  1. What precipitate forms when aqueous solutions of calcium bromide and potassium phosphate are mixed?
A) (KBr)2(s)
B) Ca3(PO4)2(s)
C) CaPO4(s)
D) KBr(s)
E) CaPO4(s)

 

 

ANS:   B                     PTS:    1                      DIF:    moderate         REF:    4.2

OBJ:    Write net ionic equations. (Example 4.2)

TOP:    chemical reactions | ions in aqueous solution

 

  1. Which equation best represents the net ionic equation for the reaction that occurs when aqueous solutions of potassium phosphate and iron(II) nitrate are mixed?
A) 3Fe2+(aq) + 2PO43–(aq) ® Fe3(PO4)2(s)
B) 2K+(aq) + Fe(NO3)2(aq) ® 2KNO3(aq) + Fe2+(aq)
C) 3Fe2+(aq) + 2PO43–(aq) ® Fe3(PO4)2(aq)
D) 2K3PO4(aq) + 3Fe2+(aq) ®  Fe3(PO4)2(s) + (K+)6(aq)
E) 2K3PO4(aq) + 3Fe(NO3)2(aq) ® Fe3(PO4)2(s) + 6KNO3(aq)

 

 

ANS:   A                     PTS:    1                      DIF:    moderate         REF:    4.2

OBJ:    Write net ionic equations. (Example 4.2)

TOP:    chemical reactions | types of chemical reactions

 

  1. Which net ionic equation best represents the reaction that occurs when an aqueous solution of lithium nitrate is mixed with an aqueous solution of ammonium bromide?
A) Li+(aq) + Br(aq) ® LiBr(s)
B) NH4+(aq) + NO3(aq) ® NH4NO3(aq)
C) NH4Br(aq) + LiNO3(aq) ® LiBr(s) + NH4NO3(aq)
D) No net reaction occurs.
E) Li+(aq) + NH4Br(aq) ® LiBr(s) + NH4+(aq)

 

 

ANS:   D                     PTS:    1                      DIF:    moderate         REF:    4.2

OBJ:    Write net ionic equations. (Example 4.2)

TOP:    chemical reactions | types of chemical reactions

KEY:   precipitation reaction                          MSC:   general chemistry

 

  1. A precipitate is expected when an aqueous solution of potassium iodide is added to an aqueous solution of
A) calcium nitrate.
B) barium hydroxide.
C) lead perchlorate.
D) iron(II) chloride.
E) sodium sulfate.

 

 

ANS:   C                     PTS:    1                      DIF:    easy                 REF:    4.3

OBJ:    Recognize precipitation (exchange) reactions.

TOP:    chemical reactions | types of chemical reactions

KEY:   precipitation reaction                          MSC:   general chemistry

 

  1. Which of the following concerning precipitation reactions is/are correct?

 

1. A precipitation reaction is a type of chemical reaction that forms a gaseous product (such as CO2).
2. A precipitation reaction is possible when two or more aqueous solutions of strong or weak electrolytes are mixed.
3. Only ionic compounds will react to form precipitates in a precipitation reactions.

 

A) 1 only
B) 2 only
C) 3 only
D) 2 and 3
E) 1, 2, and 3

 

 

ANS:   B                     PTS:    1                      DIF:    easy                 REF:    4.3

OBJ:    Recognize precipitation (exchange) reactions.

TOP:    chemical reactions | types of chemical reactions

 

  1. Which of the following combinations will produce a precipitate?

 

1. AgNO3(aq) and HCl(aq)
2. HCl(aq) and Na2CO3(aq)
3. NaOH(aq) and K3PO4(aq)

 

A) 1 only
B) 2 only
C) 3 only
D) 2 and 3
E) 1, 2, and 3

 

 

ANS:   A                     PTS:    1                      DIF:    moderate         REF:    4.3

OBJ:    Recognize precipitation (exchange) reactions.

TOP:    chemical reactions | types of chemical reactions

 

  1. Which of the following are classified as precipitation reactions?

 

1. AgNO3(aq) + HCl(aq) ® AgCl(s) + HNO3(aq)
2. 2Mg(s) + O2(g) ® 2MgO(s)
3. Zn(s) + 2Ag+(aq) ® 2Ag(s) + Zn2+(aq)

 

A) 1 only
B) 2 only
C) 3 only
D) 2 and 3
E) 1, 2, and 3

 

 

ANS:   A                     PTS:    1                      DIF:    moderate         REF:    4.3

OBJ:    Recognize precipitation (exchange) reactions.

TOP:    chemical reactions | types of chemical reactions

 

  1. A precipitate will form when a freshly prepared aqueous carbonic acid solution is added to an aqueous solution of
A) potassium carbonate.
B) ammonium chloride.
C) nitrous acid.
D) calcium hydroxide.
E) sodium chloride.

 

 

ANS:   D                     PTS:    1                      DIF:    moderate         REF:    4.3

OBJ:    Recognize precipitation (exchange) reactions.

TOP:    chemical reactions | types of chemical reactions

KEY:   precipitation reaction                          MSC:   general chemistry

 

  1. When a solution of lithium chloride and a solution of ammonium sulfate are mixed,
A) a new salt is formed.
B) no reaction occurs.
C) a precipitate forms.
D) an acid and a base are formed.
E) a gas is evolved.

 

 

ANS:   B                     PTS:    1                      DIF:    difficult           REF:    4.3

OBJ:    Recognize precipitation (exchange) reactions.

TOP:    chemical reactions | types of chemical reactions

KEY:   precipitation reaction                          MSC:   general chemistry

 

  1. When solutions of barium chloride and lithium sulfate are mixed, the spectator ions in the resulting reaction are
A) only SO42–.
B) both Li+ and Cl.
C) only Cl.
D) only Li+.
E) only Ba2+.

 

 

ANS:   B                     PTS:    1                      DIF:    easy                 REF:    4.3

OBJ:    Write molecular, complete ionic, and net ionic equations for precipitation reactions.

TOP:    chemical reactions | types of chemical reactions

KEY:   precipitation reaction                          MSC:   general chemistry

 

  1. Aqueous solutions of sodium sulfide and copper(II) chloride are mixed together. Which statement is correct?
A) CuS will precipitate from solution.
B) NaCl will precipitate from solution.
C) No precipitate will form.
D) Both NaCl and CuS will precipitate from solution.
E) No reaction will occur.

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    4.3

OBJ:    Decide whether a precipitation reaction will occur. (Example 4.3)

TOP:    chemical reactions | types of chemical reactions

KEY:   precipitation reaction                          MSC:   general chemistry

 

  1. Which net ionic equation best represents the reaction that occurs when an aqueous solution of barium chloride is mixed with an aqueous solution of lithium sulfate?
A) 2H+(aq) + 2Cl(aq) ® 2HCl(g)
B) Ba2+(aq) + SO42–(aq) ® BaSO4(s)
C) Ba2+(aq) + 2Cl(aq) + 2Li+(aq) + SO42–(aq) ® BaSO4(s) + 2LiCl(aq)
D) BaCl2(aq) + Li2SO4(aq)® BaSO4(s)+ 2LiCl(aq)
E) No net reaction occurs.

 

 

ANS:   B                     PTS:    1                      DIF:    moderate         REF:    4.3

OBJ:    Decide whether a precipitation reaction will occur. (Example 4.3)

TOP:    chemical reactions | types of chemical reactions

KEY:   precipitation reaction                          MSC:   general chemistry

 

  1. What products result from mixing aqueous solutions of Ni(NO3)2(aq) and NaNO3(aq)?
A) Ni(OH)2(s), Na+(aq), and NO3(aq)
B) Ni(OH)2(s) and NaNO3(s)
C) Ni2(OH)2(aq) and NaNO3(aq)
D) Ni(OH)2(aq) and NaNO3(s)
E) Ni(OH)2(s), N2(g), and H2O(l)

 

 

ANS:   A                     PTS:    1                      DIF:    difficult           REF:    4.3

OBJ:    Determine the product of a precipitation reaction.

TOP:    chemical reactions | types of chemical reactions

 

  1. What products result from mixing aqueous solutions of Cu(C2H3O2)2(aq) and Rb3PO4(aq)?
A) Cu2PO4(s) and Rb3(C2H3O2)2(aq)
B) Cu3(PO4)2(s) and RbC2H3O2(s)
C) CuP(s), CO2(g), H2O(l), RbOH(aq), and PH3(g).
D) CuPO4(s) and Rb3(C2H3O2)2(aq)
E) Cu3(PO4)2(s), Rb+(aq), and C2H3O2(aq)

 

 

ANS:   E                     PTS:    1                      DIF:    difficult           REF:    4.3

OBJ:    Determine the product of a precipitation reaction.

TOP:    chemical reactions | types of chemical reactions

 

  1. Which of the following is not an Arrhenius base?
A) NH3
B) KOH
C) Ba(OH)2
D) Ca(OH)2
E) all are Arrhenius bases

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    4.4

OBJ:    Define Arrhenius acid and Arrhenius base.

TOP:    chemical reactions | types of chemical reactions

KEY:   acid-base reaction | base definition    MSC:   general chemistry

 

  1. Which of the following may be classified as an acid-base reaction?

 

1. AgNO3(aq) + HCl(aq) ® AgCl(s) + HNO3(aq)
2. 2Mg(s) + O2(g) ® 2MgO(s)
3. Zn(s) + 2Ag+(aq) ® 2Ag(s) + Zn2+(aq)

 

A) 1 only
B) 2 only
C) 3 only
D) 1, 2, and 3
E) none

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    4.4

OBJ:    Define Arrhenius acid and Arrhenius base.

TOP:    chemical reactions | types of chemical reactions

 

  1. Which of the following combinations will result in an acid-base reaction?

 

1. AgNO3(aq) and HCl(aq)
2. HCl(aq) and Na2CO3(aq)
3. NaOH(aq) and K3PO4(aq)

 

A) 1 only
B) 2 only
C) 3 only
D) 1, 2, and 3
E) none

 

 

ANS:   B                     PTS:    1                      DIF:    easy                 REF:    4.4

OBJ:    Define Arrhenius acid and Arrhenius base.

TOP:    chemical reactions | types of chemical reactions

 

  1. Which of the following concerning acid-base reactions is/are correct?

 

1. Only strong acids and strong bases will undergo an acid-base reaction.
2. All acid-base reactions produce water and an ionic compound (salt) as a product.
3. All reactions that form a gas are also acid-base reactions.

 

A) 1 only
B) 2 only
C) 3 only
D) 1, 2, and 3
E) none

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    4.4

OBJ:    Define Arrhenius acid and Arrhenius base.

TOP:    chemical reactions | types of chemical reactions

 

  1. Which of the following reactions best describes the dissolution of solid KOH(s) in water?
A) KOH(s) + H2O(l) ® KO(aq) + H3O+(aq)
B) KOH(s) ® KO(aq) + H+(aq)
C) KOH(s) ® K+(aq) + OH(aq)
D) KOH(s) ® KO+(aq) + H(aq)
E) KOH(s) ® KOH(aq)

 

 

ANS:   C                     PTS:    1                      DIF:    easy                 REF:    4.4

OBJ:    Write the chemical equation of a Arrhenius base in aqueous solution.

TOP:    chemical reactions | types of chemical reactions

KEY:   acid-base reaction | strong base          MSC:   general chemistry

 

  1. Which of the following chemical equations best represents the dissolution of a soluble group 2A metal hydroxide in water?
A) M(OH)2(s) ® M+(aq) + (OH)2(aq)
B) M(OH)2(s) ® M2+(aq) + 2OH(aq)
C) M(OH)2(s) + H2O(l) ® MO(aq) + OH(aq) + H3O+(aq)
D) M(OH)2(s) ® M(OH)2(aq)
E) M(OH)2(s) ® MO(aq) + H2O(l)

 

 

ANS:   B                     PTS:    1                      DIF:    moderate         REF:    4.4

OBJ:    Write the chemical equation of a Arrhenius base in aqueous solution.

TOP:    chemical reactions | types of chemical reactions

 

  1. Which of the following reactions best describes the acid–base properties of ammonia (NH3) in aqueous solution?
A) NH3(aq) + 3H2O(l) ® N3–(aq) + 3H3O+(aq)
B) NH3(aq) ® N3–(aq) + 3H+(aq)
C) NH3(aq) + H2O(l)  NH4+(aq) + OH(aq)
D) NH3(aq) + H2O(l) ® NH4+(aq) + OH(aq)
E) NH3(aq) + 3H2O(l)  N3–(aq) + 3H3O+(aq)

 

 

ANS:   C                     PTS:    1                      DIF:    moderate         REF:    4.4

OBJ:    Write the chemical equation of a Brønsted-Lowry base in aqueous solution.

TOP:    chemical reactions | types of chemical reactions

KEY:   acid-base reaction | weak base           MSC:   general chemistry

 

  1. Which of the following reactions best describes the dissolution of gaseous hydrogen chloride (HCl) in water?
A) HCl(g) + 2H2O(l) ® H3O+(aq) + ClO(aq) + H2(g)
B) 2HCl(g) ® H2(g) + Cl2(g)
C) HCl(g) + H2O(l) ® H3O+(aq) + Cl(aq)
D) HCl(g) + 5H2O(l) ® H3O+(aq) + ClO4(aq) + 4H2(g)
E) HCl(g) + H2O(l) ® H3O+(aq) + ClO(aq)

 

 

ANS:   C                     PTS:    1                      DIF:    moderate         REF:    4.4

OBJ:    Write the chemical equation of an acid in aqueous solution using a hydronium ion.

TOP:    chemical reactions | types of chemical reactions

KEY:   acid-base reaction | strong acid          MSC:   general chemistry

 

  1. Which of the following reactions best describes the acid–base properties of acetic acid (HC2H3O2) in aqueous solution?
A) HC2H3O2(aq) + H2O(l) ® H3O+(aq) + C2H3O2(aq)
B) HC2H3O2(aq) + H2O(l) ® C2H5O2+(aq) + OH(aq)
C) HC2H3O2(aq) + H2O(l)  C2H5O2+(aq) + OH(aq)
D) HC2H3O2(aq) + H2O(l)  H3O+(aq) + C2H3O2(aq)
E) HC2H3O2(aq) + 4H2O(l)  4H3O+(aq) + C2O24–(aq)

 

 

ANS:   D                     PTS:    1                      DIF:    easy                 REF:    4.4

OBJ:    Write the chemical equation of an acid in aqueous solution using a hydronium ion.

TOP:    chemical reactions | types of chemical reactions

KEY:   acid-base reaction | weak acid            MSC:   general chemistry

 

  1. Which of the following is not a strong acid in aqueous solution?
A) HBr
B) HClO4
C) HF
D) HI
E) HCl

 

 

ANS:   C                     PTS:    1                      DIF:    easy                 REF:    4.4

OBJ:    Learn the common strong acids and strong bases.

TOP:    chemical reactions | types of chemical reactions

KEY:   acid-base reaction | strong acid          MSC:   general chemistry

 

  1. Which of the following is a weak base in aqueous solution?
A) HOCH2CH2OH
B) Ba(OH)2
C) CH3COOH
D) NH3
E) HI

 

 

ANS:   D                     PTS:    1                      DIF:    easy                 REF:    4.4

OBJ:    Learn the common strong acids and strong bases.

TOP:    chemical reactions | types of chemical reactions

 

  1. Which of the following is a strong base in aqueous solution?
A) HOCH2CH2OH
B) Ba(OH)2
C) H3PO4
D) NH3
E) HI

 

 

ANS:   B                     PTS:    1                      DIF:    easy                 REF:    4.4

OBJ:    Learn the common strong acids and strong bases.

TOP:    chemical reactions | types of chemical reactions

 

  1. Which of the following is a strong acid in aqueous solution?
A) HOCH2CH2OH
B) Ba(OH)2
C) CH3COOH
D) NH3
E) HClO4

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    4.4

OBJ:    Learn the common strong acids and strong bases.

TOP:    chemical reactions | types of chemical reactions

 

  1. All the following are strong acids in aqueous solution except
A) HCl.
B) HF.
C) HI.
D) HBr.
E) H2SO4.

 

 

ANS:   B                     PTS:    1                      DIF:    easy                 REF:    4.4

OBJ:    Learn the common strong acids and strong bases.

TOP:    chemical reactions | types of chemical reactions

KEY:   acid-base reaction | strong acid          MSC:   general chemistry

 

  1. Which of the following is a strong acid in aqueous solution?
A) H3PO3
B) H3PO4
C) H2CO3
D) H2SO3
E) H2SO4

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    4.4

OBJ:    Learn the common strong acids and strong bases.

TOP:    chemical reactions | types of chemical reactions

KEY:   acid-base reaction | strong acid          MSC:   general chemistry

 

  1. Which of the following is not a strong base in aqueous solution?
A) Sr(OH)2
B) Ca(OH)2
C) KOH
D) LiOH
E) NH3

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    4.4

OBJ:    Learn the common strong acids and strong bases.

TOP:    chemical reactions | types of chemical reactions

KEY:   acid-base reaction | strong base          MSC:   general chemistry

 

  1. Which of the following is a strong base in aqueous solution?
A) LiCl
B) CH3OH
C) LiOH
D) NH3
E) HClO4

 

 

ANS:   C                     PTS:    1                      DIF:    easy                 REF:    4.4

OBJ:    Learn the common strong acids and strong bases.

TOP:    chemical reactions | types of chemical reactions

KEY:   acid-base reaction | strong base          MSC:   general chemistry

 

  1. Which of the following is a strong electrolyte in aqueous solution?
A) tartaric acid
B) ascorbic acid
C) hypochlorous acid
D) citric acid
E) hydroiodic acid

 

 

ANS:   E                     PTS:    1                      DIF:    moderate         REF:    4.4

OBJ:    Distinguish between a strong acid and a weak acid and the solutions they form.

TOP:    chemical reactions | types of chemical reactions

KEY:   acid-base reaction | strong acid          MSC:   general chemistry

 

  1. All of the following are weak electrolytes in aqueous solution except
A) acetic acid.
B) tartaric acid.
C) nitric acid.
D) citric acid.
E) nitrous acid.

 

 

ANS:   C                     PTS:    1                      DIF:    moderate         REF:    4.4

OBJ:    Distinguish between a strong acid and a weak acid and the solutions they form.

TOP:    chemical reactions | types of chemical reactions

KEY:   acid-base reaction | strong acid          MSC:   general chemistry

 

  1. Which of the following is a weak electrolyte in aqueous solution?
A) HClO4
B) H2SO4
C) H3PO4
D) HNO3
E) HI

 

 

ANS:   C                     PTS:    1                      DIF:    moderate         REF:    4.4

OBJ:    Distinguish between a strong acid and a weak acid and the solutions they form.

TOP:    chemical reactions | types of chemical reactions

KEY:   acid-base reaction | weak acid            MSC:   general chemistry

 

  1. Which of the following is a weak electrolyte in aqueous solution?
A) Mg(OH)2
B) NH3
C) LiOH
D) RbOH
E) Sr(OH)2

 

 

ANS:   B                     PTS:    1                      DIF:    easy                 REF:    4.4

OBJ:    Distinguish between a strong base and a weak base and the solutions they form.

TOP:    chemical reactions | types of chemical reactions

KEY:   acid-base reaction | weak base           MSC:   general chemistry

 

  1. Which of the following is a weak acid in aqueous solution?
A) HCl
B) H2SO4
C) H2S
D) HNO3
E) HI

 

 

ANS:   C                     PTS:    1                      DIF:    easy                 REF:    4.4

OBJ:    Classify acids and bases as strong or weak. (Example 4.4)

TOP:    chemical reactions | types of chemical reactions

KEY:   acid-base reaction | weak acid            MSC:   general chemistry

 

  1. Which of the following is a weak base in aqueous solution?
A) HOCl
B)  LiOH
C) NH3
D) HBr
E) Ba(OH)2

 

 

ANS:   C                     PTS:    1                      DIF:    easy                 REF:    4.4

OBJ:    Classify acids and bases as strong or weak. (Example 4.4)

TOP:    chemical reactions | types of chemical reactions

KEY:   acid-base reaction | weak base           MSC:   general chemistry

 

  1. Which of the following is a weak base in aqueous solution?
A) H2CO3
B) Ba(OH)2
C) B(OH)3
D) LiOH
E) N2H4

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    4.4

OBJ:    Classify acids and bases as strong or weak. (Example 4.4)

TOP:    chemical reactions | types of chemical reactions

KEY:   acid-base reaction | weak base           MSC:   general chemistry

 

  1. Which of the following is a weak acid in aqueous solution?
A) HClO4
B) HCl
C) H2SO4
D) HNO3
E) H2SO3

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    4.4

OBJ:    Classify acids and bases as strong or weak. (Example 4.4)

TOP:    chemical reactions | types of chemical reactions

KEY:   acid-base reaction | weak acid            MSC:   general chemistry

 

  1. Which of the following is a strong acid in aqueous solution?
A) HClO
B) H3PO4
C) HBr
D) HNO2
E) H3PO3

 

 

ANS:   C                     PTS:    1                      DIF:    easy                 REF:    4.4

OBJ:    Classify acids and bases as strong or weak. (Example 4.4)

TOP:    chemical reactions | types of chemical reactions

KEY:   acid-base reaction | strong acid          MSC:   general chemistry

 

  1. Which of the following is best described as an acid–base reaction?
A) HNO3(aq) + NH3(aq) ® NH4+(aq) + NO3(aq)
B) P4(s) + 3OH(aq) + 3H3O(l) ® PH3(g) + 3H2PO2(aq)
C) Cu(s) + H2S(g) ® CuS(s) + H2(g)
D) 2H2(g) + O2(g) ® 2H2O(l)
E) 2KClO3(aq) ® 2KCl(s) + 3O2(g)

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    4.4

OBJ:    Recognize neutralization reactions.

TOP:    chemical reactions | types of chemical reactions

KEY:   acid-base reaction | neutralization reaction                            MSC:   general chemistry

 

  1. What is the net ionic equation for the acid–base reaction that occurs when acetic acid and sodium hydroxide solutions are mixed?
A) HC2H3O2(aq) + OH(aq) ® C2H3O2(aq) + H2O(l)
B) H+(aq) + OH(aq) ® H2O(l)
C) H3O+(aq) + OH(aq) ® 2H2O(l)
D) C2H3O2(aq) + H+(aq) + Na+(aq) + OH(aq) ® Na+(aq) + C2H3O2(aq) + H2O(l)
E) HC2H3O2(aq) + NaOH(aq) ® NaC2H3O2(aq) + H2O(l)

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    4.4

OBJ:    Write an equation for a neutralization reaction. (Example 4.5)

TOP:    chemical reactions | types of chemical reactions

KEY:   acid-base reaction | neutralization reaction                            MSC:   general chemistry

 

  1. What is the net ionic equation for the reaction of acetic acid, CH3COOH, with NH3?
A) CH3COOH(aq) + NH3(aq) ® NH4+(aq) + CH3COO(aq)
B) H+(aq) + OH(aq) ® H2O(l)
C) CH3COOH(aq) + NH3(aq) ® NH4CH3COO(aq)
D) CH3COO(aq) + H+(aq) + NH3(aq) ® NH4CH3COO(aq)
E) H+(aq) + NH3(aq) ® NH4+(aq)

 

 

ANS:   A                     PTS:    1                      DIF:    moderate         REF:    4.4

OBJ:    Write an equation for a neutralization reaction. (Example 4.5)

TOP:    chemical reactions | types of chemical reactions

KEY:   acid-base reaction | neutralization reaction                            MSC:   general chemistry

 

  1. What is the net ionic equation for the reaction of NH3 with HClO4?
A) NH3(aq) + H+(aq) ® NH4+(aq)
B) NH3(aq) + HClO4(aq) ® NH4ClO4(aq)
C) NH3(aq) + ClO4(aq) ® NH2(aq) + HClO4(aq)
D) H(aq) + H+(aq) ® H2(g)
E) H+(aq) + OH(aq) ® H2O(l)

 

 

ANS:   A                     PTS:    1                      DIF:    moderate         REF:    4.4

OBJ:    Write an equation for a neutralization reaction. (Example 4.5)

TOP:    chemical reactions | types of chemical reactions

KEY:   acid-base reaction | neutralization reaction                            MSC:   general chemistry

 

  1. What is the net ionic equation for the acid–base reaction between chlorous acid and sodium hydroxide?
A) H+(aq) + ClO2(aq) + Na+(aq) + OH(aq) ® NaClO2(aq) + H2O(l)
B) HClO2(aq) + OH(aq) ® ClO2(aq) + H2O(l)
C) HClO2(aq) + NaOH(aq) ® NaClO2(aq) + H2O(l)
D) H+(aq) + OH(aq) ® H2O(l)
E) H+(aq) + ClO2(aq) + Na+(aq) + OH(aq) ® Na+(aq) + ClO2(aq) + H2O(l)

 

 

ANS:   B                     PTS:    1                      DIF:    easy                 REF:    4.4

OBJ:    Write an equation for a neutralization reaction. (Example 4.5)

TOP:    chemical reactions | types of chemical reactions

KEY:   acid-base reaction | neutralization reaction                            MSC:   general chemistry

 

  1. What is the net ionic equation for the acid–base reaction that occurs when an excess of a potassium hydroxide solution is added to a solution of H2SeO3?
A) H2SeO3(aq) + 2OH(aq) ® 2H2O(l) + SeO32–(aq)
B) H+(aq) + OH(aq) ® H2O(l)
C) 2H+(aq) + 2OH(aq) ® 2H2O(l)
D) 2H+(aq) + SeO32–(aq) + 2K+(aq) + 2OH(aq) ® 2K+(aq) + SeO32–(aq) + 2H2O(l)
E) H2SeO3(aq) + 2KOH(aq) ® K2SeO3(aq) + 2H2O(l)

 

 

ANS:   A                     PTS:    1                      DIF:    moderate         REF:    4.4

OBJ:    Write an equation for a neutralization reaction. (Example 4.5)

TOP:    chemical reactions | types of chemical reactions

KEY:   acid-base reaction | neutralization reaction                            MSC:   general chemistry

 

  1. Which of the following salts may be obtained by the reaction of a weak acid with a strong base?
A) LiClO4
B) NaCl
C) K2SO3
D) MgCl2
E) NH4F

 

 

ANS:   C                     PTS:    1                      DIF:    moderate         REF:    4.4

OBJ:    Write an equation for a neutralization reaction. (Example 4.5)

TOP:    chemical reactions | types of chemical reactions

KEY:   acid-base reaction | neutralization reaction                            MSC:   general chemistry

 

  1. What is the net ionic equation for the complete neutralization of the triprotic acid citric acid, H3C6H5O6, by a strong base?
A) H3C6H5O6(aq) + 3OH(aq) ® 3H2O(l) + C6H5O63–(aq)
B) H3C6H5O6(aq) + 3NaOH(aq) ® 3H2O(l) + Na3C6H5O6(aq)
C) H+(aq) + OH(aq) ® H2O(l)
D) H3C6H5O6(aq) + NaOH(aq) ® H2O(l) + NaH2C6H5O6(aq)
E) 3H+(aq) + 3OH(aq) ® 3H2O(l)

 

 

ANS:   A                     PTS:    1                      DIF:    moderate         REF:    4.4

OBJ:    Write an equation for a neutralization reaction. (Example 4.5)

TOP:    chemical reactions | types of chemical reactions

KEY:   acid-base reaction | neutralization reaction                            MSC:   general chemistry

 

  1. Which of the following salts cannot be obtained by the neutralization of a strong acid and a strong base?
A) NaCl
B) LiNO3
C) NH4Br
D) Ba(ClO4)2
E) Na2SO4

 

 

ANS:   C                     PTS:    1                      DIF:    moderate         REF:    4.4

OBJ:    Write an equation for a neutralization reaction. (Example 4.5)

TOP:    chemical reactions | types of chemical reactions

KEY:   acid-base reaction | neutralization reaction                            MSC:   general chemistry

 

  1. What is the net ionic equation for the complete neutralization of phosphoric acid with potassium hydroxide?
A) H3PO4(aq) + 3OH(aq) ® 3H2O(l) + PO43–(aq)
B) H3P(aq) + 3KOH(aq) ® 3H2O(l) + K3P(aq)
C) H+(aq) + OH(aq) ® H2O(l)
D) H3PO4(aq) + 3KOH(aq) ® 3H2O(l) + K3PO4(aq)
E) 3H+(aq) + 3KOH(aq) ® 3H2O(l) + 3K+(aq)

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    4.4

OBJ:    Write an equation for a neutralization reaction. (Example 4.5)

TOP:    chemical reactions | types of chemical reactions

KEY:   acid-base reaction | neutralization reaction                            MSC:   general chemistry

 

  1. What is the net ionic equation for the neutralization of hydrofluoric acid with sodium hydroxide?
A) H+(aq) + NaOH(aq) ® H2O(l) + Na+(aq)
B) HF(aq) + OH(aq) ® H2O(l) + F(aq)
C) HF(aq) + NaOH(aq) ® H2O(l) + NaF(aq)
D) H+(aq) + OH(aq) ® H2O(l)
E) HF(aq) + OH(aq) ® H2F+(aq) + O2–(aq)

 

 

ANS:   B                     PTS:    1                      DIF:    easy                 REF:    4.4

OBJ:    Write an equation for a neutralization reaction. (Example 4.5)

TOP:    chemical reactions | types of chemical reactions

KEY:   acid-base reaction | neutralization reaction                            MSC:   general chemistry

 

  1. What is the net ionic equation for the reaction of hydrobromic acid with sodium hydroxide?
A) H+(aq) + OH(aq) ® H2O(l)
B) H+(aq) + Br(aq) + Na+(aq) + OH(aq) ® NaBr(aq) + H2O(l)
C) H+(aq) + Br(aq) + Na+(aq) + OH(aq) ® HBr(aq) + NaOH(aq)
D) HBr(aq) + Na+(aq) + OH(aq) ® NaBr(aq) + H2O(l)
E) HBr(aq) + NaOH(aq) ® NaBr(aq) + H2O(l)

 

 

ANS:   A                     PTS:    1                      DIF:    moderate         REF:    4.4

OBJ:    Write an equation for a neutralization reaction. (Example 4.5)

TOP:    chemical reactions | types of chemical reactions

KEY:   acid-base reaction | neutralization reaction                            MSC:   general chemistry

 

  1. The net ionic equation for the reaction between aqueous ammonia and hydrobromic acid is
A) HBr(aq) + NH3(aq) ® NH4Br(aq).
B) H+(aq) + OH(aq) ® H2O(l).
C) HBr(aq) + OH(aq) ® Br(aq) + H2O(l).
D) H+(aq) + NH3(aq) ® NH4+(aq).
E) H+(aq) + Br(aq) + NH3(aq) ® NH4+(aq) + Br(aq).

 

 

ANS:   D                     PTS:    1                      DIF:    moderate         REF:    4.4

OBJ:    Write an equation for a neutralization reaction. (Example 4.5)

TOP:    chemical reactions | types of chemical reactions

KEY:   acid-base reaction | neutralization reaction                            MSC:   general chemistry

 

  1. Which of the following best represents the molecular equation for the reaction of aqueous ammonia with sulfuric acid?
A) 2NH3(aq) + H2SO4(aq) ® (NH4)2SO4(aq)
B) NH3(aq) + H2SO4(aq) ® NH4SO4(aq)
C) NH4OH(aq) + H2SO4(aq) ® NH4SO4(aq) + H2O(l)
D) 2NH4+(aq) + H2SO4(aq) ® (NH4)2SO4(aq) + 2H+(aq)
E) 2NH4+(aq) + H2SO4(aq) ® (NH4)2SO4(aq) + H2(g)

 

 

ANS:   A                     PTS:    1                      DIF:    moderate         REF:    4.4

OBJ:    Write an equation for a neutralization reaction. (Example 4.5)

TOP:    chemical reactions | types of chemical reactions

KEY:   acid-base reaction | neutralization reaction                            MSC:   general chemistry

 

  1. The net ionic equation for the reaction of nitrous acid with lithium hydroxide is
A) H+(aq) + OH(aq) ® H2O(l).
B) HNO2(aq) + OH(aq) ® NO2(aq) + H2O(l).
C) HNO3(aq) + LiOH(aq) ® LiNO3(aq) + H2O(l).
D) HNO3(aq) + LiOH(aq) ® Li+(aq) + NO3(aq) + H2O(l).
E) H+(aq) + NO2(aq) + Li+(aq) + OH(aq) ® Li+(aq) + NO2(aq) + H2O(l).

 

 

ANS:   B                     PTS:    1                      DIF:    moderate         REF:    4.4

OBJ:    Write an equation for a neutralization reaction. (Example 4.5)

TOP:    chemical reactions | types of chemical reactions

KEY:   acid-base reaction | neutralization reaction                            MSC:   general chemistry

 

  1. What is the net ionic equation for the reaction that occurs between nitrous acid and strontium hydroxide?
A) HNO2(aq) + OH(aq) ® NO2(aq) + H2O(l)
B) 2HNO2(aq) + Sr(OH)2 ® Sr(NO2)2(aq) + H2O(l)
C) 2H+(aq) + 2NO2(aq) + Sr2+(aq) + 2OH(aq) ® Sr(NO2)2(aq) + H2O(l)
D) 2H+(aq) + 2NO2(aq) + Sr2+(aq) + 2OH(aq) ® Sr2+(aq) + 2NO2(aq) + 2H2O(l)
E) H+(aq) + OH(aq) ® H2O(l)

 

 

ANS:   A                     PTS:    1                      DIF:    moderate         REF:    4.4

OBJ:    Write an equation for a neutralization reaction. (Example 4.5)

TOP:    chemical reactions | types of chemical reactions

KEY:   acid-base reaction | neutralization reaction                            MSC:   general chemistry

 

  1. In the reaction of acetic acid with aqueous sodium hydroxide, what is the spectator ion?
A) OH(aq)
B) There is no spectator ion.
C) C2H3O2(aq)
D) Na+(aq)
E) H+(aq)

 

 

ANS:   D                     PTS:    1                      DIF:    moderate         REF:    4.4

OBJ:    Write an equation for a neutralization reaction. (Example 4.5)

TOP:    chemical reactions | types of chemical reactions

KEY:   acid-base reaction | neutralization reaction                            MSC:   general chemistry

 

  1. The balanced net ionic equation for the reaction of magnesium sulfite with nitric acid is
A) MgSO3(s) + 2H+(aq) ® Mg2+(aq) + SO2(g) + H2O(l).
B) Mg2+(aq) + CO32–(aq) + 2H+(aq) + 2NO3(aq) ® Mg(NO3)2(aq) + SO2(g) + H2O(l).
C) MgSO3(s) + 2HNO2(aq) ® Mg2+(aq) + 2NO2(aq) + SO2(g) + H2O(l).
D) Mg(HSO3)2(s) + 2HNO3(aq) ® Mg2+(aq) + 2NO3(aq) + SO2(g) + 2H2O(l).
E) MgSO3(s) + 2HNO3(aq) ® Mg2+(aq) + 2NO3(aq) + SO2(g) + H2O(l).

 

 

ANS:   A                     PTS:    1                      DIF:    moderate         REF:    4.4

OBJ:    Write an equation for a reaction with gas formation. (Example 4.6)

TOP:    chemical reactions | types of chemical reactions                    KEY:   acid-base reaction

MSC:   general chemistry

 

  1. Which of the following concerning oxidation-reduction reactions is/are correct?

 

1. Oxidation-reduction reactions always form gaseous products.
2. At least one substance is oxidized and one substance is reduced in an oxidation-reduction reaction.
3. The species that is oxidized loses one or more electrons in an oxidation-reduction reaction.

 

A) 1 only
B) 2 only
C) 3 only
D) 1 and 3
E) 2 and 3

 

 

ANS:   E                     PTS:    1                      DIF:    moderate         REF:    4.5

OBJ:    Define an oxidation-reduction reaction.

TOP:    chemical reactions | types of chemical reactions

 

  1. Which of the following is an oxidation–reduction reaction?
A) PbCO3(s) + 2HNO3(aq) ® Pb(NO3)2(aq) + CO2(g) + H2O(l)
B) Na2O(s) + H2O(l) ® 2NaOH(aq)
C) SO3(g) + H2O(l) ® H2SO4(aq)
D) CO2(g) + H2O(l) ® H2CO3(aq)
E) C2H4(g) + H2(g) ® C2H6(g)

 

 

ANS:   E                     PTS:    1                      DIF:    moderate         REF:    4.5

OBJ:    Define an oxidation-reduction reaction.

TOP:    chemical reactions | types of chemical reactions

KEY:   oxidation-reduction reaction              MSC:   general chemistry

 

  1. All the following are oxidation–reduction reactions except
A) H2(g) + F2(g) ® 2HF(g).
B) Ca(s) + H2(g) ® CaH2(s).
C) 2K(s) + 2H2O(l) ® 2KOH(aq) + H2(g).
D) 6Li(s) + N2(g) ® 2Li3N(s).
E) Mg3N2(s) + 6H2O(l) ® 3Mg(OH)2(s) + 2NH3(g).

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    4.5

OBJ:    Define an oxidation-reduction reaction.

TOP:    chemical reactions | types of chemical reactions

KEY:   oxidation-reduction reaction              MSC:   general chemistry

 

  1. Which of the following chemical reactions is an oxidation–reduction reaction?
A) Zn(s) + S(s) ® ZnS(s)
B) H2SO4(aq) + 2NaOH(aq) ® Na2SO4(aq) + 2H2O(l)
C) NaOH(aq) + HCl(aq) ® NaCl(aq) + H2O(l)
D) AgNO3(aq) + NaCl(aq) ® AgCl(s) + NaNO3(aq)
E) CO2(aq) + H2O(aq) ® H2CO3(aq)

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    4.5

OBJ:    Define an oxidation-reduction reaction.

TOP:    chemical reactions | types of chemical reactions

KEY:   oxidation-reduction reaction              MSC:   general chemistry

 

  1. Which one of the following is necessary in order for a metal to be oxidized?
A) addition of electrons
B) removal of electrons
C) addition of oxygen
D) removal of oxygen
E) addition of hydrogen

 

 

ANS:   B                     PTS:    1                      DIF:    easy                 REF:    4.5

OBJ:    Define an oxidation-reduction reaction.

TOP:    chemical reactions | types of chemical reactions

KEY:   oxidation-reduction reaction              MSC:   general chemistry

 

  1. Which of the following reactions is an oxidation–reduction reaction?
A) CaCO3(s) + 2HCl(aq) ® CaCl2(aq) + H2O(l) + CO2(g)
B) NH4NO3(aq) ® N2O(g) + 2H2O(l)
C) AgNO3(aq) + KI(aq) ® AgI(s) + KNO3(aq)
D) CaO(s) + SO3(g) ® CaSO4(s)
E) H2SO4(aq) + 2NaOH(s) ® Na2SO4(aq) + 2H2O(l)

 

 

ANS:   B                     PTS:    1                      DIF:    easy                 REF:    4.5

OBJ:    Define an oxidation-reduction reaction.

TOP:    chemical reactions | types of chemical reactions

KEY:   oxidation-reduction reaction              MSC:   general chemistry

 

  1. Which of the following chemical reactions is an oxidation–reduction reaction?
A) Mg(s) + CO2(g) ® MgO(s) + CO(g)
B) H2SO4(aq) + Ba(OH)2(aq) ® BaSO4(s) + 2H2O(l)
C) Pb(NO3)2(aq) + 2HCl(aq) ® PbCl2(s) + 2HNO3(aq)
D) CO2(aq) + H2O(l) ® H2CO3(aq)
E) NH3(g) + HCl(g) ® NH4Cl(s)

 

 

ANS:   A                     PTS:    1                      DIF:    moderate         REF:    4.5

OBJ:    Define an oxidation-reduction reaction.

TOP:    chemical reactions | types of chemical reactions

KEY:   oxidation-reduction reaction              MSC:   general chemistry

 

  1. Which of the following is best described as an oxidation–reduction reaction?
A) SO2(g) + H2O(l) ® H2SO3(aq)
B) 2Cl(g) ® Cl2(g)
C) 3O2(g) ® 2O3(g)
D) 2NO2(g) ® N2O4(g)
E) SO2(g) + O2(g) ® SO3(g)

 

 

ANS:   E                     PTS:    1                      DIF:    difficult           REF:    4.5

OBJ:    Define an oxidation-reduction reaction.

TOP:    chemical reactions | types of chemical reactions

KEY:   oxidation-reduction reaction              MSC:   general chemistry

 

  1. Which of the following reactions involves neither oxidation nor reduction?
A) N2(g) + 3H2(g) ® 2NH3(g)
B) NH4NO2(s) ® N2(g) + 2H2O(l)
C) Cu(s) + 2Ag+(aq) ® Cu2+(aq) + 2Ag(s)
D) 2CrO42–(aq) + 2H+(aq) ® Cr2O72–(aq) + H2O(l)
E) C2H4(g) + H2(g) ® C2H6(g)

 

 

ANS:   D                     PTS:    1                      DIF:    moderate         REF:    4.5

OBJ:    Define an oxidation-reduction reaction.

TOP:    chemical reactions | types of chemical reactions

KEY:   oxidation-reduction reaction              MSC:   general chemistry

 

  1. Which of the following conversions is not an oxidation–reduction reaction?
A) conversion of Mn2O3 to MnO2
B) conversion of K to KCl
C) conversion of NaBr to Br2
D) conversion of CaCO3 to CaO
E) conversion of VO2+ to VO2+

 

 

ANS:   D                     PTS:    1                      DIF:    easy                 REF:    4.5

OBJ:    Define an oxidation-reduction reaction.

TOP:    chemical reactions | types of chemical reactions

KEY:   oxidation-reduction reaction              MSC:   general chemistry

 

  1. All the following species can be reduced except
A) ClO2.
B) F.
C) NO3.
D) H+.
E) Fe3+.

 

 

ANS:   B                     PTS:    1                      DIF:    moderate         REF:    4.5

OBJ:    Learn the oxidation-number rules.

TOP:    chemical reactions | types of chemical reactions

KEY:   oxidation-reduction reaction              MSC:   general chemistry

 

  1. Which of the following species cannot function as an oxidizing agent?
A) S
B) Br
C) H+
D) MnO4
E) Mn2+

 

 

ANS:   B                     PTS:    1                      DIF:    moderate         REF:    4.5

OBJ:    Learn the oxidation-number rules.

TOP:    chemical reactions | types of chemical reactions

KEY:   oxidation-reduction reaction              MSC:   general chemistry

 

  1. What is the oxidation number of each O in BaFeO4?
A) +6
B) +2
C) -2
D) +3
E) 0

 

 

ANS:   C                     PTS:    1                      DIF:    moderate         REF:    4.5

OBJ:    Learn the oxidation-number rules.

TOP:    chemical reactions | types of chemical reactions

 

  1. Which of the following species cannot function as an oxidizing agent?
A) Co3+
B) O2
C) Cr2O72–
D) MnO4
E) O2–

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    4.5

OBJ:    Assign oxidation numbers. (Example 4.7)

TOP:    chemical reactions | types of chemical reactions

KEY:   oxidation-reduction reaction | oxidation number                   MSC:   general chemistry

 

  1. What is the oxidation number of each H in NH4(H2PO4)?
A) -3
B) -2
C) +1
D) +5
E) 0

 

 

ANS:   C                     PTS:    1                      DIF:    moderate         REF:    4.5

OBJ:    Assign oxidation numbers. (Example 4.7)

TOP:    chemical reactions | types of chemical reactions

 

  1. The oxidation number of nitrogen given for all the following species is correct except
A) N2H4  (–2).
B) N2O  (+1).
C) NH2OH  (–1).
D) HNO2  (+3).
E) HN3  (–1).

 

 

ANS:   E                     PTS:    1                      DIF:    moderate         REF:    4.5

OBJ:    Assign oxidation numbers. (Example 4.7)

TOP:    chemical reactions | types of chemical reactions

KEY:   oxidation-reduction reaction | oxidation number                   MSC:   general chemistry

 

  1. In which one of the following is the oxidation number of nitrogen given incorrectly?
A) N2H4  (–2)
B) NaN3  (–1)
C) HNO2  (+3)
D) N2O3  (+3)
E) H2N2O2  (+1)

 

 

ANS:   B                     PTS:    1                      DIF:    difficult           REF:    4.5

OBJ:    Assign oxidation numbers. (Example 4.7)

TOP:    chemical reactions | types of chemical reactions

KEY:   oxidation-reduction reaction | oxidation number                   MSC:   general chemistry

 

  1. What is the average oxidation number of C in C6H12O6?
A) –2
B) 0
C) +1
D) +2
E) –1

 

 

ANS:   B                     PTS:    1                      DIF:    easy                 REF:    4.5

OBJ:    Assign oxidation numbers. (Example 4.7)

TOP:    chemical reactions | types of chemical reactions

KEY:   oxidation-reduction reaction | oxidation number                   MSC:   general chemistry

 

  1. The oxidation number of carbon in the formate ion, HCOO, is
A) 0.
B) –2.
C) +2.
D) –1.
E) +1.

 

 

ANS:   C                     PTS:    1                      DIF:    moderate         REF:    4.5

OBJ:    Assign oxidation numbers. (Example 4.7)

TOP:    chemical reactions | types of chemical reactions

KEY:   oxidation-reduction reaction | oxidation number                   MSC:   general chemistry

 

  1. The oxidation numbers of nitrogen in N2O and N2F4 are, respectively,
A) –2 and +2.
B) –2 and –3.
C) +1 and +2.
D) +1 and –1.
E) +1 and –3.

 

 

ANS:   C                     PTS:    1                      DIF:    moderate         REF:    4.5

OBJ:    Assign oxidation numbers. (Example 4.7)

TOP:    chemical reactions | types of chemical reactions

KEY:   oxidation-reduction reaction | oxidation number                   MSC:   general chemistry

 

  1. The sum of all the oxidation numbers in cysteine,  , is
A) –1.
B) +4.
C) 0.
D) –2.
E) +2.

 

 

ANS:   C                     PTS:    1                      DIF:    easy                 REF:    4.5

OBJ:    Assign oxidation numbers. (Example 4.7)

TOP:    chemical reactions | types of chemical reactions

KEY:   oxidation-reduction reaction | oxidation number                   MSC:   general chemistry

 

  1. The oxidation number of barium in BaO is
A) +1.
B) +4.
C) –1/2.
D) +2.
E) –2.

 

 

ANS:   D                     PTS:    1                      DIF:    difficult           REF:    4.5

OBJ:    Assign oxidation numbers. (Example 4.7)

TOP:    chemical reactions | types of chemical reactions

KEY:   oxidation-reduction reaction | oxidation number                   MSC:   general chemistry

 

  1. The oxidation number of chromium in sodium chromite, NaCrO2, is
A) –1.
B) –2.
C) +2.
D) +1.
E) +3.

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    4.5

OBJ:    Assign oxidation numbers. (Example 4.7)

TOP:    chemical reactions | types of chemical reactions

KEY:   oxidation-reduction reaction | oxidation number                   MSC:   general chemistry

 

  1. In which of the following molecules or ions does the underlined element have an oxidation number of –3?
A) NO2
B) PH4+
C) CrO2Cl2
D) HNO2
E) Zn(OH)42–

 

 

ANS:   B                     PTS:    1                      DIF:    moderate         REF:    4.5

OBJ:    Assign oxidation numbers. (Example 4.7)

TOP:    chemical reactions | types of chemical reactions

KEY:   oxidation-reduction reaction | oxidation number                   MSC:   general chemistry

 

  1. Which of the following is a correct set of oxidation numbers for the atoms in calcium dihydrogen phosphate, Ca(H2PO4)2?
A) Ca = +2, H = +1, P = +5, O = –2
B) Ca = +2, H = 0, P = +7, O = –8
C) Ca = +2, H = –1, P = +4, O = –2
D) Ca2+ = +2, H2PO4 = –1
E) Ca = +2, H = +1, P = +3, O = –2

 

 

ANS:   A                     PTS:    1                      DIF:    moderate         REF:    4.5

OBJ:    Assign oxidation numbers. (Example 4.7)

TOP:    chemical reactions | types of chemical reactions

KEY:   oxidation-reduction reaction | assigning oxidation number

MSC:   general chemistry

 

  1. Assign oxidation numbers to each atom in nitrous acid.
A) H = +1, N = +5, O = –1
B) H = +1, N = +5, O = –2
C) H = +1, N = +3, O = –1
D) H = +1, N = +3, O = 0
E) H = +1, N = +3, O = –2

 

 

ANS:   E                     PTS:    1                      DIF:    moderate         REF:    4.5

OBJ:    Assign oxidation numbers. (Example 4.7)

TOP:    chemical reactions | types of chemical reactions

KEY:   oxidation-reduction reaction | assigning oxidation number

MSC:   general chemistry

 

  1. In basic solution the chromate ion, CrO42–, can be converted to the chromite, CrO2, ion. The number of electrons gained or lost by the chromium atom is
A) 0.
B) 3 electrons lost.
C) 2 electrons lost.
D) 3 electrons gained.
E) 2 electrons gained.

 

 

ANS:   D                     PTS:    1                      DIF:    moderate         REF:    4.5

OBJ:    Assign oxidation numbers. (Example 4.7)

TOP:    chemical reactions | types of chemical reactions

KEY:   oxidation-reduction reaction | assigning oxidation number

MSC:   general chemistry

 

  1. What is the reduction half-reaction for the reaction of zinc with hydrochloric acid?

Zn(s) + 2H+(aq) + 2Cl(aq) ® Zn2+(aq) + 2Cl(aq) + H2(g)

A) Zn(s) ® Zn2+(aq) + 2e
B) 2H+(aq) + 2e ® H2(g)
C) 2H+(aq) + 2e(aq) ® H2(g) + 2Cl(aq)
D) 2H+(aq) + 2Cl(aq) ® H2(g) + 2e + 2Cl(aq)
E) Zn(s) ® Zn2+(aq) + 2Cl(aq) + 2e

 

 

ANS:   B                     PTS:    1                      DIF:    easy                 REF:    4.5

OBJ:    Write the half-reactions of an oxidation-reduction reaction.

TOP:    chemical reactions | types of chemical reactions

KEY:   oxidation-reduction reaction              MSC:   general chemistry

 

  1. What is the reduction half-reaction for the reaction between iron(II) sulfate and potassium permanganate in a sulfuric acid solution?

5Fe2+(aq) + MnO4(aq) + 8H+(aq) ® 5Fe3+(aq) + Mn2+(aq) + 4H2O(l)

A) MnO4(aq) + 3e ® Mn2+(aq) + 4H2O(l)
B) MnO4(aq) + 8H+(aq) + 5e ® Mn2+(aq) + 4H2O(l)
C) 5Fe2+(aq) ® 5Fe3+(aq) + 5e
D) Fe2+(aq) + 2e ® Fe(s)
E) MnO4(aq) + 5e ® Mn2+(aq) + SO42–(aq)

 

 

ANS:   B                     PTS:    1                      DIF:    difficult           REF:    4.5

OBJ:    Write the half-reactions of an oxidation-reduction reaction.

TOP:    chemical reactions | types of chemical reactions

KEY:   oxidation-reduction reaction              MSC:   general chemistry

 

  1. What is the balanced oxidation half-reaction for the following reaction?

Cu2+(aq) + Fe(s) ® Cu(s) + Fe2+(aq)

A) Cu(s) + 2e ® Cu(s)
B) Cu2+(aq) + 2e ® Cu(s)
C) Fe2+(aq) + 2e ® Fe(s)
D) Cu(s) ® Cu2+(aq) + 2e
E) Fe(s) ® Fe2+(aq) + 2e

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    4.5

OBJ:    Write the half-reactions of an oxidation-reduction reaction.

TOP:    chemical reactions | types of chemical reactions

KEY:   oxidation-reduction reaction              MSC:   general chemistry

 

  1. Consider the reaction of sulfur dioxide and water, which is represented by the following equation:

2SO2(g) + 2H2O(g) ® 2H2S(g) + 3O2(g)

How many moles of electrons are transferred according to the equation that is written?

A) 2
B) 6
C) 4
D) 12
E) 8

 

 

ANS:   D                     PTS:    1                      DIF:    moderate         REF:    4.5

OBJ:    Write the half-reactions of an oxidation-reduction reaction.

TOP:    chemical reactions | types of chemical reactions

KEY:   oxidation-reduction reaction              MSC:   general chemistry

 

  1. In the following reaction, which species is oxidized?

3Na2S(s) + 8H+(aq) + 2NO3(aq)  ®  6Na+(aq) + 3S(s) + 2NO(g) + 4H2O(l)

A) NO3
B) Na2S
C) Na+
D) NO
E) H+

 

 

ANS:   B                     PTS:    1                      DIF:    moderate         REF:    4.5

OBJ:    Determine the species undergoing oxidation and reduction.

TOP:    chemical reactions | types of chemical reactions

KEY:   oxidation-reduction reaction              MSC:   general chemistry

 

  1. For the reaction that occurs in a lead storage battery,

Pb(s) + PbO2(s) + 2H+(aq) + 2HSO4(aq) ® 2PbSO4(s) + 2H2O(l)

the oxidizing agent is

A) HSO4.
B) PbSO4.
C) Pb.
D) PbO2.
E) H+.

 

 

ANS:   D                     PTS:    1                      DIF:    moderate         REF:    4.5

OBJ:    Determine the species undergoing oxidation and reduction.

TOP:    chemical reactions | types of chemical reactions

KEY:   oxidation-reduction reaction              MSC:   general chemistry

 

  1. In the balanced equation

3Na+(aq) + 3OH(aq) + P4(s) + 3H2O(l) ® 3Na+(aq) + 3H2PO2(aq) + PH3(g)

what is the reducing agent?

A) OH
B) Na+
C) H2O
D) P4
E) PH3

 

 

ANS:   D                     PTS:    1                      DIF:    moderate         REF:    4.5

OBJ:    Determine the species undergoing oxidation and reduction.

TOP:    chemical reactions | types of chemical reactions

KEY:   oxidation-reduction reaction              MSC:   general chemistry

 

  1. In the following oxidation–reduction reaction,

8H+(aq) + 6Cl(aq) + Sn(s) + 4NO3(aq) ® SnCl62–(aq) + 4NO2(g) + 4H2O(l)

what is the oxidizing agent?

A) Sn
B) NO3
C) H+
D) Cl
E) SnCl62–

 

 

ANS:   B                     PTS:    1                      DIF:    moderate         REF:    4.5

OBJ:    Determine the species undergoing oxidation and reduction.

TOP:    chemical reactions | types of chemical reactions

KEY:   oxidation-reduction reaction              MSC:   general chemistry

 

  1. Besides its ability to function as an acid, hydrosulfuric acid, H2S, is able to act as a reducing agent. Which one of the following equations illustrates this property of H2S?
A) H2S(aq) + 2OH(aq) ® S2–(aq) + 2H2O(l)
B) H2S(aq) + 2Na(s) ® H2(g) + 2Na+(aq) + S2–(aq)
C) H2S(aq) + 2AgI(s) ® Ag2S(s) + 2H+(aq) + 2I(aq)
D) H2S(aq) + Cu2+(aq) ® CuS(s) + 2H+(aq)
E) 3H2S(aq) + 2H+(aq) + 2NO3(aq) ® 3S(s) + 2NO(g) + 4H2O(l)

 

 

ANS:   E                     PTS:    1                      DIF:    moderate         REF:    4.5

OBJ:    Determine the species undergoing oxidation and reduction.

TOP:    chemical reactions | types of chemical reactions

KEY:   oxidation-reduction reaction              MSC:   general chemistry

 

  1. In the following reaction,

2H2O2(l) ® 2H2O(l) + O2(g)

hydrogen peroxide functions as

A) an acid.
B) a reducing agent.
C) an oxidizing agent.
D) both an oxidizing agent and a reducing agent.
E) neither an oxidizing agent nor a reducing agent.

 

 

ANS:   D                     PTS:    1                      DIF:    difficult           REF:    4.5

OBJ:    Determine the species undergoing oxidation and reduction.

TOP:    chemical reactions | types of chemical reactions

KEY:   oxidation-reduction reaction              MSC:   general chemistry

 

  1. Which of the following species would be expected to function as a reducing agent?
A) Ba2+
B) Zn2+
C) ClO4
D) Cs+
E) V2+

 

 

ANS:   E                     PTS:    1                      DIF:    moderate         REF:    4.5

OBJ:    Determine the species undergoing oxidation and reduction.

TOP:    chemical reactions | types of chemical reactions

KEY:   oxidation-reduction reaction | oxidation number                   MSC:   general chemistry

 

  1. All of the following reactions are described as decomposition reactions except
A) CuSO4 • 5H2O(s)  CuSO4(s) + 5H2O(g).
B) 2PbO2(s)  2PbO(s) + O2(g).
C) Fe(CO)5(l)  Fe(s) + 5CO(g).
D) H2SO3(aq)  SO2(g) + H2O(l).
E) NO2(g) + H2O(l)  NO(g) + 2HNO3(aq).

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    4.5

OBJ:    Recognize combination reactions, decomposition reactions, displacement reactions, and combustion reactions.

TOP:    chemical reactions | types of chemical reactions

KEY:   oxidation-reduction reaction | common oxidation-reduction reactions

MSC:   general chemistry

 

  1. All of the following reactions can be described as displacement reactions except
A) Zn(s) + FeCl2(aq) ® ZnCl2(aq) + Fe(s).
B) C6H6(l) + Cl2(g) ® C6H5Cl(l) + HCl(g).
C) 2Na(s) + 2H2O(l) ® 2NaOH(aq) + H2(g).
D) Cu(s) + 2AgNO3(aq) ® Cu(NO3)2(aq) + 2Ag(s).
E) CuSO4(aq) + Fe(s) ® Cu(s) + FeSO4(aq).

 

 

ANS:   B                     PTS:    1                      DIF:    moderate         REF:    4.5

OBJ:    Recognize combination reactions, decomposition reactions, displacement reactions, and combustion reactions.

TOP:    chemical reactions | types of chemical reactions

KEY:   oxidation-reduction reaction | common oxidation-reduction reactions

MSC:   general chemistry

 

  1. All of the following reactions are called combination reactions except
A) BaO(s) + SO2(g) ® BaSO3(s).
B) C6H10(l) + Br2(l) ® C6H10Br2(l).
C) Br2(l) + H2O(l) ® HOBr(aq) + HBr(aq).
D) CaCl2(s) + 6H2O(l) ® CaCl2 • 6H2O(s).
E) 3H2(g) + N2(g) ® 2NH3(g).

 

 

ANS:   C                     PTS:    1                      DIF:    moderate         REF:    4.5

OBJ:    Recognize combination reactions, decomposition reactions, displacement reactions, and combustion reactions.

TOP:    chemical reactions | types of chemical reactions

KEY:   oxidation-reduction reaction | common oxidation-reduction reactions

MSC:   general chemistry

 

  1. All of the following reactions are described as decomposition reactions except
A) PCl5(l) ® PCl3(g) + Cl2(g).
B) 2CH3OH(l) + 3O2(g) ® 2CO2(g) + 4H2O(g).
C) NH4HS(s) ® NH3(g) + H2S(g).
D) (NH4)2Cr2O7(s) ® N2(g) + 4H2O(g) + Cr2O3(s).
E) 2CO2(g) ® 2CO(g) + O2(g).

 

 

ANS:   B                     PTS:    1                      DIF:    easy                 REF:    4.5

OBJ:    Recognize combination reactions, decomposition reactions, displacement reactions, and combustion reactions.

TOP:    chemical reactions | types of chemical reactions

KEY:   oxidation-reduction reaction | common oxidation-reduction reactions

MSC:   general chemistry

 

  1. All of the following reactions can be described as displacement reactions except
A) CuSO4(aq) + Ni(s) ® NiSO4(aq) + Cu(s).
B) 3CuCl2(aq) + 2Al(s) ® 3Cu(s) + 2AlCl3(aq).
C) Fe(s) + 2HCl(aq) ® FeCl2(g) + H2(g).
D) CH4(g) + Br2(g) ® CH3Br(g) + HBr(g).
E) Mg(s) + Hg(NO3)2(aq) ® Mg(NO3)2(aq) + Hg(l).

 

 

ANS:   D                     PTS:    1                      DIF:    moderate         REF:    4.5

OBJ:    Recognize combination reactions, decomposition reactions, displacement reactions, and combustion reactions.

TOP:    chemical reactions | types of chemical reactions

KEY:   oxidation-reduction reaction | common oxidation-reduction reactions

MSC:   general chemistry

 

  1. All of the following reactions are described as decomposition reactions except
A) PCl5(g) ® PCl3(g) + Cl2(g).
B) 2H2O(g) ® 2H2(g) + O2(g).
C) BaCl2 • 2H2O(s) ® BaCl2(s) + 2H2O(g).
D) CH4(g) + Cl2(g) ® CH3Cl(g) + HCl(g).
E) CaCO3(s) ® CaO(s) + CO2(g).

 

 

ANS:   D                     PTS:    1                      DIF:    easy                 REF:    4.5

OBJ:    Recognize combination reactions, decomposition reactions, displacement reactions, and combustion reactions.

TOP:    chemical reactions | types of chemical reactions

KEY:   oxidation-reduction reaction | common oxidation-reduction reactions

MSC:   general chemistry

 

  1. A 5.0-g sample of a white, powdery solid is heated in the presence of air. The solid remaining after heating now has a mass of 3.2 g. The reaction that took place must have been a(an)
A) acid–base reaction.
B) decomposition reaction.
C) combination reaction.
D) precipitation reaction.
E) displacement reaction.

 

 

ANS:   B                     PTS:    1                      DIF:    easy                 REF:    4.5

OBJ:    Recognize combination reactions, decomposition reactions, displacement reactions, and combustion reactions.

TOP:    chemical reactions | types of chemical reactions

KEY:   oxidation-reduction reaction | common oxidation-reduction reactions

MSC:   general chemistry

 

  1. What is the balanced oxidation half-reaction provided below?

Zn(s) + 2H+(aq) ® Zn2+(aq) + H2(g)

A) Zn2+(aq) + 2e ® Zn(s)
B) Zn2+(aq) + e ® Zn(s)
C) Zn(s) ® Zn2+(aq) + 2e
D) 2H+(aq) + 2e ® H2(g)
E) 2H+(aq) ® H2(g) + 2e

 

 

ANS:   C                     PTS:    1                      DIF:    moderate         REF:    4.6

OBJ:    Balance simple oxidation-reduction reactions by the half-reaction method. (Example 4.8)  TOP:            chemical reactions | types of chemical reactions

 

  1. All of the following half-reactions are balanced except
A) NO3(aq) + 4H+(aq) + 3e ® NO(g) + 2H2O(l).
B) H3PO3(aq) + H2O(l) ® H3PO4(aq) + 2H+(aq) + 2e.
C) 2Ta(s) + 5H2O(l) ® Ta2O5(s) + 10H+(aq) + 10e.
D) 2H2O(l) + 2e ® H2(g) + 2OH(aq).
E) H2O2(aq) ® 2OH(aq) + 2e.

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    4.6

OBJ:    Balance simple oxidation-reduction reactions by the half-reaction method. (Example 4.8)  TOP:            chemical reactions | types of chemical reactions

KEY:   balancing oxidation-reduction equations | half-reaction method

MSC:   general chemistry

 

  1. What is the balanced reduction half-reaction for the reaction

 

3Mg(s) + N2(g) ® Mg3N2(s)

A) Mg2+ + 2e ® Mg
B) Mg ® Mg2+ + 2e
C) Mg2+ ® Mg + 2e
D) N2 + 6e® 2N3
E) N2 ® 2N3+ 6e

 

 

ANS:   D                     PTS:    1                      DIF:    moderate         REF:    4.6

OBJ:    Balance simple oxidation-reduction reactions by the half-reaction method. (Example 4.8)              TOP:            chemical reactions | types of chemical reactions

 

  1. The following reaction occurs in basic solution:

_ H2O(aq) + _ MnO4(aq) + _ ClO(aq) ® _ MnO2(s) + _ ClO4(aq) + _ OH(aq)

When the equation is properly balanced, what is the sum of the lowest whole-number coefficients?

A) 20
B) 9
C) 10
D) 6
E) 12

 

 

ANS:   B                     PTS:    1                      DIF:    difficult           REF:    4.6

OBJ:    Balance simple oxidation-reduction reactions by the half-reaction method. (Example 4.8)             TOP:            chemical reactions | types of chemical reactions

KEY:   balancing oxidation-reduction equations | half-reaction method

MSC:   general chemistry

 

  1. When the following equation is balanced, what is the lowest whole-number coefficient for SO2?

____ HBrO3(aq) + ____ SO2(g) + ____ H2O(l) ® ____ Br2(aq) + ____ H2SO4(aq)

A) 7
B) 10
C) 8
D) 4
E) 5

 

 

ANS:   E                     PTS:    1                      DIF:    difficult           REF:    4.6

OBJ:    Balance simple oxidation-reduction reactions by the half-reaction method. (Example 4.8)              TOP:            chemical reactions | types of chemical reactions

KEY:   balancing oxidation-reduction equations | half-reaction method

MSC:   general chemistry

 

  1. The following reaction occurs in basic solution. What is the sum of the lowest whole-number coefficients in the balanced equation?

____ MnO4(aq) + ____ NH3(aq) ® ____ NO3(aq) + ____ MnO2(s)

A) 9
B) 18
C) 12
D) 29
E) 23

 

 

ANS:   D                     PTS:    1                      DIF:    difficult           REF:    4.6

OBJ:    Balance simple oxidation-reduction reactions by the half-reaction method. (Example 4.8)              TOP:            chemical reactions | types of chemical reactions

KEY:   balancing oxidation-reduction equations | half-reaction method

MSC:   general chemistry

 

  1. In basic solution, H2O2 oxidizes Cr3+ to CrO42– and is reduced to OH. What is the lowest whole-number coefficient for OH in the balanced net ionic equation?
A) 6
B) 10
C) 4
D) 16
E) 8

 

 

ANS:   B                     PTS:    1                      DIF:    difficult           REF:    4.6

OBJ:    Balance simple oxidation-reduction reactions by the half-reaction method. (Example 4.8)              TOP:            chemical reactions | types of chemical reactions

KEY:   balancing oxidation-reduction equations | half-reaction method

MSC:   general chemistry

 

  1. The following change occurs in acidic solution:

____ S2–(aq) + ____ Cr2O72–(aq) ® ____ S(s) + ____ Cr3+(aq)

In the balanced equation, for every mole of Cr2O72– that reacts, _____ mol of H+ are consumed.

A) 7
B) 10
C) 5
D) 14
E) 8

 

 

ANS:   D                     PTS:    1                      DIF:    difficult           REF:    4.6

OBJ:    Balance simple oxidation-reduction reactions by the half-reaction method. (Example 4.8)  TOP:            chemical reactions | types of chemical reactions

KEY:   balancing oxidation-reduction equations | half-reaction method

MSC:   general chemistry

 

  1. Which of the following do you need to know to be able to calculate the molarity of a salt solution?
  2. the mass of salt added
  3. the molar mass of the salt

III. the volume of water added

  1. the total volume of the solution
A) II and III only
B) I, II, and IV only
C) I, II, and III only
D) I and III only
E) You need all of the information.

 

 

ANS:   B                     PTS:    1                      DIF:    easy                 REF:    4.7

OBJ:    Define molarity or molar concentration of a solution.

TOP:    chemical reactions | working with solutions                          KEY:   concentration

MSC:   general chemistry

 

  1. Each of the following containers illustrates a solution in which the black spheres represent solute.

Which is the most concentrated solution?

A) A
B) All have the same concentration.
C) B
D) C
E) D

 

 

ANS:   D                     PTS:    1                      DIF:    easy                 REF:    4.7

OBJ:    Define molarity or molar concentration of a solution.

TOP:    chemical reactions | working with solutions                          KEY:   concentration

MSC:   general chemistry

 

  1. A student must prepare 5.00 L of 0.100 M Na2CO3 (106 g/mol). Which is the best procedure for preparing this solution?
A) Measure 53.0 g Na2CO3 and add 5.00 kg of H2O.
B) Measure 10.6 g Na2CO3 and add 5.00 kg of H2O.
C) Measure 53.0 g Na2CO3 and add H2O until the final homogeneous solution has a volume of 5.00 L.
D) Measure 10.6 g Na2CO3 and add H2O until the final homogeneous solution has a volume of 5.00 L.
E) Measure 53.0 g Na2CO3 and add 5.00 L of H2O.

 

 

ANS:   C                     PTS:    1                      DIF:    moderate         REF:    4.7

OBJ:    Define molarity or molar concentration of a solution.

TOP:    chemical reactions | working with solutions                          KEY:   concentration

MSC:   general chemistry

 

  1. What mass of Na2CO3 is present in 0.650 L of a 0.505 M Na2CO3 solution?
A) 34.8 g
B) 68.9 g
C) 53.5 g
D) 136 g
E) 82.3 g

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    4.7

OBJ:    Calculate the molarity from mass and volume. (Example 4.9)

TOP:    chemical reactions | working with solutions                          KEY:   concentration

MSC:   general chemistry

 

  1. What is the molarity of an NaI solution that contains 7.3 g of NaI in 28.0 mL of solution?
A) 1.7 M
B) 0.049 M
C) 0.0038 M
D) 0.00019 M
E) 0.26 M

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    4.7

OBJ:    Calculate the molarity from mass and volume. (Example 4.9)

TOP:    chemical reactions | working with solutions                          KEY:   concentration

MSC:   general chemistry

 

  1. In order to prepare a standard 1.00 M solution of oxalic acid from H2C2O4 · 2H2O (126.07 g/mol), 7.564 g of oxalic acid dihydrate should be dissolved in
A) enough water to make 60.0 g of solution.
B) 52.436 g of water.
C) 60.0 g of water.
D) enough water to make 60.0 mL of solution.
E) 60.0 cm3 of water.

 

 

ANS:   D                     PTS:    1                      DIF:    easy                 REF:    4.7

OBJ:    Calculate the molarity from mass and volume. (Example 4.9)

TOP:    chemical reactions | working with solutions                          KEY:   concentration

MSC:   general chemistry

 

  1. A 29.0-g sample of NaOH is dissolved in water, and the solution is diluted to give a final volume of 1.60 L. The molarity of the final solution is
A) 18.1 M.
B) 0.453 M.
C) 0.725 M.
D) 0.0552 M.
E) 0.862 M.

 

 

ANS:   B                     PTS:    1                      DIF:    easy                 REF:    4.7

OBJ:    Calculate the molarity from mass and volume. (Example 4.9)

TOP:    chemical reactions | working with solutions                          KEY:   concentration

MSC:   general chemistry

 

  1. What is the molarity of hydrochloric acid in a solution containing 88.5 g of HCl in 215 mL of solution?
A) 0.412 M
B) 0.00243 M
C) 2.43 M
D) 412 M
E) 11.3 M

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    4.7

OBJ:    Calculate the molarity from mass and volume. (Example 4.9)

TOP:    chemical reactions | working with solutions                          KEY:   concentration

MSC:   general chemistry

 

  1. What mass of oxalic acid dihydrate, H2C2O4 · 2H2O, is required to prepare 250.0 mL of a 1.32 M solution of oxalic acid?
A) 126 g
B) 41.6 g
C) 119 g
D) 166 g
E) 29.7 g

 

 

ANS:   B                     PTS:    1                      DIF:    moderate         REF:    4.7

OBJ:    Use molarity as a conversion factor. (Example 4.10)

TOP:    chemical reactions | working with solutions                          KEY:   concentration

MSC:   general chemistry

 

  1. How many grams of lithium nitrate, LiNO3 (68.9 g/mol), are required to prepare 342.6 mL of a 0.783 M LiNO3 solution?
A) 0.00389 g
B) 18.5 g
C) 0.0541 g
D) 30.1 g
E) 0.00635 g

 

 

ANS:   B                     PTS:    1                      DIF:    moderate         REF:    4.7

OBJ:    Use molarity as a conversion factor. (Example 4.10)

TOP:    chemical reactions | working with solutions                          KEY:   concentration

MSC:   general chemistry

 

  1. How many moles of sulfate ions are there in a 0.545-L solution of 0.489 M Al2(SO4)3?
A) 0.267 mol
B) 0.800 mol
C) 3.34 mol
D) 0.0888 mol
E) 2.69 mol

 

 

ANS:   B                     PTS:    1                      DIF:    moderate         REF:    4.7

OBJ:    Use molarity as a conversion factor. (Example 4.10)

TOP:    chemical reactions | working with solutions                          KEY:   concentration

MSC:   general chemistry

 

  1. What volume of 0.745 M Na2CO3 (106 g/mol) solution contains 50.3 g of Na2CO3?
A) 0.354 L
B) 7.16 ´ 103 L
C) 0.637 L
D) 3.97 ´ 103 L
E) 1.57 L

 

 

ANS:   C                     PTS:    1                      DIF:    moderate         REF:    4.7

OBJ:    Use molarity as a conversion factor. (Example 4.10)

TOP:    chemical reactions | working with solutions                          KEY:   concentration

MSC:   general chemistry

 

  1. Which of the following solutions contains the largest number of moles of dissolved particles?
A) 25. mL of 5.0 M sodium chloride
B) 25. mL of 2.0 M sulfuric acid
C) 200. mL of 0.10 M sodium hydroxide
D) 50. mL of 1.0 M hydrochloric acid
E) 100. mL of 0.5 M nitric acid

 

 

ANS:   A                     PTS:    1                      DIF:    moderate         REF:    4.7

OBJ:    Use molarity as a conversion factor. (Example 4.10)

TOP:    chemical reactions | working with solutions                          KEY:   concentration

MSC:   general chemistry

 

  1. Which substance would produce 2 mol of particles per mole of solute when dissolved in water?
A) NH4CH3COO
B) CH2O
C) CO2
D) SO2
E) Al(NO3)3

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    4.7

OBJ:    Use molarity as a conversion factor. (Example 4.10)

TOP:    chemical reactions | working with solutions                          KEY:   concentration

MSC:   general chemistry

 

  1. How many moles of KOH are present in 25.4 mL of 0.965 M KOH?
A)  mol
B) 26.3 mol
C)  mol
D) 24.5 mol
E) 0.965 mol

 

 

ANS:   C                     PTS:    1                      DIF:    moderate         REF:    4.7

OBJ:    Use molarity as a conversion factor. (Example 4.10)

TOP:    chemical reactions | working with solutions                          KEY:   concentration

MSC:   general chemistry

 

  1. What mass of H3PO4 (98.0 g/mol) is present in 36.2 L of a 0.0827 M solution of H3PO4?
A) 0.0305 g
B) 0.00341 g
C) 2.93 ´ 102 g
D) 4.29 ´ 104 g
E) 4.47 g

 

 

ANS:   C                     PTS:    1                      DIF:    moderate         REF:    4.7

OBJ:    Use molarity as a conversion factor. (Example 4.10)

TOP:    chemical reactions | working with solutions                          KEY:   concentration

MSC:   general chemistry

 

  1. Calculate the molarity of a solution that contains 32.5 g of NaOH (40.0 g/mol) in 469 mL of solution.
A) 0.381 M
B) 2.77 ´ 103 M
C) 0.577 M
D) 3.81 ´ 105 M
E) 1.73 M

 

 

ANS:   E                     PTS:    1                      DIF:    moderate         REF:    4.7

OBJ:    Use molarity as a conversion factor. (Example 4.10)

TOP:    chemical reactions | working with solutions                          KEY:   concentration

MSC:   general chemistry

 

  1. What volume of 0.76 M sodium bromide, NaBr, contains 8.8 ´ 10–4 mol of bromide ions?
A) 0.58 mL
B) 0.67 L
C) 1.2 mL
D) 0.86 L
E) 0.67 mL

 

 

ANS:   C                     PTS:    1                      DIF:    easy                 REF:    4.7

OBJ:    Use molarity as a conversion factor. (Example 4.10)

TOP:    chemical reactions | working with solutions                          KEY:   concentration

MSC:   general chemistry

 

  1. To dilute 1.00 L of a 0.600 M to 0.100 M, the final volume must be
A) 60 L.
B) 0.7 L.
C) 1/6 the original volume.
D) More information is needed to answer this question.
E) 6 times the original volume.

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    4.8

OBJ:    Describe what happens to the concentration of a solution when it is diluted.

TOP:    chemical reactions | working with solutions                          KEY:   diluting solutions

MSC:   general chemistry

 

  1. What is the final concentration of HCl in a solution prepared by addition of 930.0 mL of 8.77 M HCl to 468.0 mL of 3.22 M HCl?  Assume volumes are additive.
A) 6.00 M
B) 0.00858 M
C) 12.0 M
D) 6.91 M
E) 5.08 M

 

 

ANS:   D                     PTS:    1                      DIF:    difficult           REF:    4.8

OBJ:    Perform calculations associated with dilution.

TOP:    chemical reactions | working with solutions                          KEY:   diluting solutions

MSC:   general chemistry

 

  1. In order to dilute 35.5 mL of 0.533 M HCl to 0.100 M, the volume of water that must be added is
A) 28.8 mL.
B) 6.66 mL.
C) 1.89 ´ 102 mL.
D) 1.50 ´ 10–3 mL.
E) 1.54 ´ 102 mL.

 

 

ANS:   E                     PTS:    1                      DIF:    moderate         REF:    4.8

OBJ:    Perform calculations associated with dilution.

TOP:    chemical reactions | working with solutions                          KEY:   diluting solutions

MSC:   general chemistry

 

  1. What volume of 2.52 M HCl is required to prepare 176.5 mL of 0.449 M HCl?
A) 9.91 ´ 102 mL
B) 1.56 ´ 102 mL
C) 31.4 mL
D) 0.0318 mL
E) 2.00 ´ 102 mL

 

 

ANS:   C                     PTS:    1                      DIF:    easy                 REF:    4.8

OBJ:    Diluting a solution. (Example 4.11)

TOP:    chemical reactions | working with solutions                          KEY:   diluting solutions

MSC:   general chemistry

 

  1. A dilute solution is prepared by transferring 45.00 mL of a 0.5616 M stock solution to a 400.0 mL volumetric flask and diluting to mark.  What is the molarity of this dilute solution?

 

A) 0.06318 M
B) 0.1264 M
C) 0.04992 M
D) 0.01580 M
E) 0.2808 M

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    4.8

OBJ:    Diluting a solution. (Example 4.11)

TOP:    chemical equilibrium | working with solutions

 

  1. In order to determine the amount of chloride ion in a solution by using gravimetric analysis, which of the following should you add to the solution?
A) NaNO3(aq)
B) Al(NO3)3(aq)
C) NaCl(aq)
D) AgNO3(aq)
E) Mg(NO3)2(aq)

 

 

ANS:   D                     PTS:    1                      DIF:    easy                 REF:    4.9

OBJ:    Determine the amount of a species by gravimetric analysis. (Example 4.12)

TOP:    chemical reactions | quantitative analysis

KEY:   gravimetric analysis                            MSC:   general chemistry

 

  1. The concentration of sulfate in a sample of wastewater is to be determined by using gravimetric analysis.  To a 100.0-mL sample of the wastewater is added an excess of calcium nitrate, forming the insoluble calcium sulfate (136.1 g/mol) according to the balanced equation given below.  The solid calcium sulfate is dried, and its mass is measured to be 0.7272 g.  What was the concentration of sulfate in the original wastewater sample?

SO42–(aq) + Ca(NO3)2(aq)  ®  CaSO4(s) + 2NO3(aq)

A) 0.05343 M
B) 0.9897 M
C) 18.72 M
D) 1.872 M
E) 9.897 M

 

 

ANS:   A                     PTS:    1                      DIF:    moderate         REF:    4.9

OBJ:    Determine the amount of a species by gravimetric analysis. (Example 4.12)

TOP:    chemical reactions | quantitative analysis

KEY:   gravimetric analysis                            MSC:   general chemistry

 

  1. The concentration of Pb2+ in a sample of wastewater is to be determined by using gravimetric analysis.  To a 100.0-mL sample of the wastewater is added an excess of sodium carbonate, forming the insoluble lead (II) carbonate (267.2092 g/mol) according to the balanced equation given below.  The solid lead (II) carbonate is dried, and its mass is measured to be 0.4078 g.  What was the concentration of Pb2+ in the original wastewater sample?

Pb2+(aq) + Na2CO3(aq)  ®  PbCO3(s) + 2Na+(aq)

A) 0.01526 M
B) 0.001526 M
C) 1.090 M
D) 0.004078 M
E) 65.52 M

 

 

ANS:   A                     PTS:    1                      DIF:    moderate         REF:    4.9

OBJ:    Determine the amount of a species by gravimetric analysis. (Example 4.12)

TOP:    chemical reactions | quantitative analysis

KEY:   gravimetric analysis                            MSC:   general chemistry

 

  1. What minimum mass of copper (II) nitrate must be added to 30.0 mL of a 0.0387 M phosphate solution in order to completely precipitate all of the phosphate as solid copper (II) phosphate?

2PO43–(aq) + 3Cu(NO3)2(aq)  ®  Cu3(PO4)2(s) + 6NO3(aq)

A) 0.218 g
B) 0.653 g
C) 0.145 g
D) 0.0726 g
E) 0.327 g

 

 

ANS:   E                     PTS:    1                      DIF:    difficult           REF:    4.9

OBJ:    Determine the amount of a species by gravimetric analysis. (Example 4.12)

TOP:    chemical reactions | quantitative analysis

KEY:   gravimetric analysis                            MSC:   general chemistry

 

  1. The reaction of HCl with NaOH is represented by the equation

HCl(aq) + NaOH(aq)  ®  NaCl(aq) + H2O(l)

What volume of 0.631 M HCl is required to titrate 15.8 mL of 0.321 M NaOH?

A) 3.20 mL
B) 1.58 mL
C) 8.04 mL
D) 15.8 mL
E) 31.1 mL

 

 

ANS:   C                     PTS:    1                      DIF:    moderate         REF:    4.10

OBJ:    Calculate the volume of reactant solution needed to perform a reaction. (Example 4.13)                                                                      TOP:               chemical reactions | quantitative analysis

KEY:   volumetric analysis                             MSC:   general chemistry

 

  1. The reaction of H2SO4 with NaOH is represented by the equation

H2SO4(aq) + 2NaOH(aq)  ®  Na2SO4(aq) + 2H2O(l)

What volume of 0.587 M H2SO4 is required to neutralize 12.7 mL of 0.302 M NaOH?

A) 3.27 mL
B) 1.70 mL
C) 6.53 mL
D) 12.7 mL
E) 24.7 mL

 

 

ANS:   A                     PTS:    1                      DIF:    moderate         REF:    4.10

OBJ:    Calculate the volume of reactant solution needed to perform a reaction. (Example 4.13)                                                                      TOP:               chemical reactions | quantitative analysis

 

  1. In a volumetric analysis experiment, a solution of sodium oxalate (Na2C2O4) in acidic solution is titrated with a solution of potassium permanganate (KMnO4) according to the following balanced chemical equation:

2KMnO4(aq) + 8H2SO4(aq) + 5Na2C2O4(aq) ® 2MnSO4(aq) + 8H2O(l) + 10CO2(g) + 5Na2SO4(aq) + K2SO4(aq)

What volume of 0.0388 M KMnO4 is required to titrate 0.134 g of Na2C2O4 dissolved in 20.0 mL of solution?

A) 1.38 mL
B) 3.45 mL
C) 10.3 mL
D) 25.8 mL
E) 20.0 mL

 

 

ANS:   C                     PTS:    1                      DIF:    moderate         REF:    4.10

OBJ:    Calculate the volume of reactant solution needed to perform a reaction. (Example 4.13)                                        TOP:               chemical reactions | quantitative analysis

KEY:   volumetric analysis                             MSC:   general chemistry

 

  1. In a volumetric analysis experiment, an acidic aqueous solution of methanol (CH3OH) is titrated with a solution of potassium dichromate (K2Cr2O7) according to the following balanced chemical equation:

2K2Cr2O7(aq) + 8H2SO4(aq) + 3CH3OH(aq) ® 2Cr2(SO4)3(aq) + 11H2O(l) + 3HCOOH(aq) + 2K2SO4(aq)

What volume of 0.00389 M K2Cr2O7 is required to titrate 1.77 g of CH3OH dissolved in 20.0 mL of solution?

A) 21.3 mL
B) 683 mL
C) 9.47 mL
D) 20.0 mL
E) 303 mL

 

 

ANS:   C                     PTS:    1                      DIF:    moderate         REF:    4.10

OBJ:    Calculate the volume of reactant solution needed to perform a reaction. (Example 4.13)                                                                 TOP:    chemical reactions | quantitative analysis

KEY:   volumetric analysis                             MSC:   general chemistry

 

  1. A 50.00-mL sample of a weak acid is titrated with 0.0955 M NaOH.  At the endpoint, it is found that 32.56 mL of titrant was used.  What was the concentration of the weak acid?
A) 0.0622 M
B) 3.11 M
C) 0.0955 M
D) 5.87 ´ 10–5 M
E) 0.147 M

 

 

ANS:   A                     PTS:    1                      DIF:    moderate         REF:    4.10

OBJ:    Calculate the quantity of substance in a titrated solution. (Example 4.14)

TOP:    chemical reactions | quantitative analysis

KEY:   volumetric analysis                             MSC:   general chemistry

 

  1. A 40.00-mL sample of a weak base is titrated with 0.0935 M HCl.  At the endpoint, it is found that 32.87 mL of titrant was used.  What was the concentration of the weak base?
A) 0.114 M
B) 7.11 ´ 10–5 M
C) 3.07 M
D) 0.0935 M
E) 0.0768 M

 

 

ANS:   E                     PTS:    1                      DIF:    moderate         REF:    4.10

OBJ:    Calculate the quantity of substance in a titrated solution. (Example 4.14)

TOP:    chemical reactions | quantitative analysis

KEY:   volumetric analysis                             MSC:   general chemistry

 

  1. In a volumetric analysis experiment, a solution of sodium oxalate (Na2C2O4) in acidic solution is titrated with a solution of potassium permanganate (KMnO4) according to the following balanced chemical equation:

2KMnO4(aq) + 8H2SO4(aq) + 5Na2C2O4(aq) ® 2MnSO4(aq) + 8H2O(l) + 10CO2(g) + 5Na2SO4(aq) + K2SO4(aq)

It required 25.0 mL of 0.0448 M KMnO4 to reach the endpoint.  What mass of Na2C2O4 was present initially?

A) 2.40 g
B) 0.0600 g
C) 15.0 g
D) 0.150 g
E) 0.375 g

 

 

ANS:   E                     PTS:    1                      DIF:    moderate         REF:    4.10

OBJ:    Calculate the quantity of substance in a titrated solution. (Example 4.14)

TOP:    chemical reactions | quantitative analysis

KEY:   volumetric analysis                             MSC:   general chemistry

 

  1. In a volumetric analysis experiment, an acidic aqueous solution of methanol (CH3OH) is titrated with a solution of potassium dichromate (K2Cr2O7) according to the following balanced chemical equation:

2K2Cr2O7(aq) + 8H2SO4(aq) + 3CH3OH(aq) ® 2Cr2(SO4)3(aq) + 11H2O(l) + 3HCOOH(aq) + 2K2SO4(aq)

It required 43.91 mL of 0.0435 M K2Cr2O7 to reach the endpoint.  What mass of CH3OH was present initially?

A) 0.0918 g
B) 2.09 g
C) 0.929 g
D) 0.0612 g
E) 0.0408 g

 

 

ANS:   A                     PTS:    1                      DIF:    moderate         REF:    4.10

OBJ:    Calculate the quantity of substance in a titrated solution. (Example 4.14)

TOP:    chemical reactions | quantitative analysis

KEY:   volumetric analysis                             MSC:   general chemistry

 

  1. An impure sample of benzoic acid (C6H5COOH, 122.12 g/mol) is titrated with 0.8067 M NaOH.  A 5.109-g sample requires 36.97 mL of titrant to reach the endpoint.  What is the percent by mass of benzoic acid in the sample?

C6H5COOH(aq) + NaOH(aq)  ®  NaC6H5COO(aq) + H2O(l)

A) 0.02442 %
B) 2.982 %
C) 100.0 %
D) 24.42 %
E) 71.29 %

 

 

ANS:   E                     PTS:    1                      DIF:    difficult           REF:    4.10

OBJ:    Calculate the quantity of substance in a titrated solution. (Example 4.14)

TOP:    chemical reactions | quantitative analysis

KEY:   volumetric analysis                             MSC:   general chemistry

Chapter 9 – Ionic and Covalent Bonding

 

  1. In which pair do both compounds exhibit predominantly ionic bonding?
A) RbCl and CaO
B) PCl5 and HF
C) KI and O3
D) Na2SO3 and BH3
E) NaF and H2O

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    9.1

OBJ:    Define ionic bond.                             TOP:    bonding | ionic bonding

MSC:   general chemistry

 

  1. The following representation of an atom is called

 

A) a Lewis dot structure.
B) an ion.
C) a structural formula.
D) an electrostatic potential map.
E) an ionic bond.

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    9.1

OBJ:    Lewis electron-dot symbol.                TOP:    bonding | ionic bonding

 

  1. Which of the following concerning Coulomb’s law is/are correct?
1. The energy of an ionic bond is proportional to the size of the ion charges.
2. The energy of an ionic bond is inversely proportional to the distance between the charges.
3. The size of an ion is not important in determining the energy of an ionic bond.

 

A) 1 only
B) 2 only
C) 3 only
D) 1 and 2
E) 1, 2, and 3

 

 

ANS:   D                     PTS:    1                      DIF:    easy                 REF:    9.1

OBJ:    Lewis electron-dot symbol.                TOP:    bonding | ionic bonding

 

  1. When the cations Na+, K+, Rb+, Cs+ are combined with chloride ion in the gas phase to form ion pairs, which pair formation releases the greatest amount of energy?
A) KCl
B) All release the same amount of energy.
C) RbCl
D) NaCl
E) CsCl

 

 

ANS:   D                     PTS:    1                      DIF:    difficult           REF:    9.1

OBJ:    Describe the energetics of ionic bonding.

TOP:    bonding | ionic bonding                     KEY:   properties of ionic substance

MSC:   general chemistry

 

  1. Which one of the following has an enthalpy change that is equal to the lattice energy of ?
A)
B)
C)
D)
E)

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    9.1

OBJ:    Define lattice energy.                         TOP:    bonding | ionic bonding

KEY:   Born-Haber cycle                               MSC:   general chemistry

 

  1. Which of the following statements concerning lattice energy is false?
A) MgO has a larger lattice energy than NaF.
B) The lattice energy for a solid with 2+ and 2– ions should be two times that for a solid with 1+ and 1– ions.
C) MgO has a larger lattice energy than LiF.
D) Lattice energy is often defined as the change in energy that occurs when an ionic solid is separated into isolated ions in the gas phase.
E) All of these are true.

 

 

ANS:   B                     PTS:    1                      DIF:    moderate         REF:    9.1

OBJ:    Define lattice energy.                         TOP:    bonding | ionic bonding

KEY:   Born-Haber cycle                               MSC:   general chemistry

 

  1. Which of the following is a correct description of lattice energy?
A) The energy change that occurs when electrons are removed from a lattice.
B) The energy change that occurs when a gas condenses to a liquid.
C) The energy change that occurs when a liquid freezes.
D) The energy change that occurs when an ionic solid is separated into its ions in the gas phase.
E) The lattice energy of a substance is identical to the ionic bond energy determined from coulombs law.

 

 

ANS:   D                     PTS:    1                      DIF:    moderate         REF:    9.1

OBJ:    Define lattice energy.                         TOP:    bonding | ionic bonding

 

  1. In the Born–Haber cycle for , which of the following processes corresponds to the first ionization energy of Na?
A)
B)
C)
D)
E)

 

 

ANS:   D                     PTS:    1                      DIF:    easy                 REF:    9.1

OBJ:    Describe the Born-Haber cycle to obtain a lattice energy from thermodynamic data.

TOP:    bonding | ionic bonding                     KEY:   Born-Haber cycle

MSC:   general chemistry

 

  1. In the Born–Haber cycle for , which of the following processes corresponds to the enthalpy of formation of ?
A)
B)
C)
D)
E)

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    9.1

OBJ:    Describe the Born-Haber cycle to obtain a lattice energy from thermodynamic data.

TOP:    bonding | ionic bonding                     KEY:   Born-Haber cycle

MSC:   general chemistry

 

  1. In the Born–Haber cycle for , which of the following processes corresponds to the electron affinity of F?
A)
B)
C)
D)
E)

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    9.1

OBJ:    Describe the Born-Haber cycle to obtain a lattice energy from thermodynamic data.

TOP:    bonding | ionic bonding                     KEY:   Born-Haber cycle

MSC:   general chemistry

 

  1. Which of the following processes is not exothermic?
A)
B)
C)
D)
E)

 

 

ANS:   E                     PTS:    1                      DIF:    moderate         REF:    9.1

OBJ:    Describe the Born-Haber cycle to obtain a lattice energy from thermodynamic data.

TOP:    bonding | ionic bonding                     KEY:   Born-Haber cycle

MSC:   general chemistry

 

  1. Calculate the lattice energy for LiF(s) given the following:
sublimation energy for Li(s) +166 kJ/mol
DHf for F(g) +77 kJ/mol
first ionization energy of Li(g) +520. kJ/mol
electron affinity of F(g) –328 kJ/mol
enthalpy of formation of LiF(s) –617 kJ/mol

 

A) 1052 kJ/mol
B) 285 kJ/mol
C) –650. kJ/mol
D) 800. kJ/mol
E) none of these

 

 

ANS:   A                     PTS:    1                      DIF:    difficult           REF:    9.1

OBJ:    Describe the Born-Haber cycle to obtain a lattice energy from thermodynamic data.

TOP:    bonding | ionic bonding                     KEY:   Born-Haber cycle

MSC:   general chemistry

 

  1. Which of the following compounds has the most ionic bonding (has the highest percentage of ionic character)?
A) CaF2
B) LiI
C) OF2
D) CsF
E) LiF

 

 

ANS:   D                     PTS:    1                      DIF:    easy                 REF:    9.1

OBJ:    Describe some general properties of ionic substances.

TOP:    bonding | ionic bonding                     KEY:   properties of ionic substance

MSC:   general chemistry

 

  1. Which of the following compounds would be expected to have the lowest melting point?
A) AlF3
B) RbF
C) NaF
D) MgF2
E) CaF2

 

 

ANS:   B                     PTS:    1                      DIF:    easy                 REF:    9.1

OBJ:    Describe some general properties of ionic substances.

TOP:    bonding | ionic bonding                     KEY:   properties of ionic substance

MSC:   general chemistry

 

  1. Which of the following compounds would be expected to have the highest melting point?
A) CsF
B) LiCl
C) LiF
D) NaBr
E) CsI

 

 

ANS:   C                     PTS:    1                      DIF:    easy                 REF:    9.1

OBJ:    Describe some general properties of ionic substances.

TOP:    bonding | ionic bonding                     KEY:   properties of ionic substance

MSC:   general chemistry

 

  1. Which of the following compounds would be expected to have the highest melting point?
A) NCl3
B) OCl2
C) MgCl2
D) LiCl
E) CCl4

 

 

ANS:   C                     PTS:    1                      DIF:    moderate         REF:    9.1

OBJ:    Describe some general properties of ionic substances.

TOP:    bonding | ionic bonding                     KEY:   properties of ionic substance

MSC:   general chemistry

 

  1. Atoms of an element X have the ground-state electron configuration 1s22s22p63s23p4.  What type of ion is X most likely to form?
A) X6+
B) X3–
C) X4+
D) X
E) X2–

 

 

ANS:   E                     PTS:    1                      DIF:    moderate         REF:    9.2

OBJ:    State the three categories of monatomic ions of the main-group elements.

TOP:    bonding | ionic bonding

KEY:   electron configurations of ions | ions of the main-group elements

MSC:   general chemistry

 

  1. Which of the following is the Lewis dot structure for the rubidium ion?
A)
B)
C)
D)
E)

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    9.2

OBJ:    Write the electron configuration and Lewis symbol for a main-group ion. (Example 9.2)    TOP:    bonding | ionic bonding

KEY:   Lewis electron-dot symbol                 MSC:   general chemistry

 

  1. Which of the following is the Lewis dot structure for the bromide ion?
A)
B)
C)
D)
E)

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    9.2

OBJ:    Write the electron configuration and Lewis symbol for a main-group ion. (Example 9.2)    TOP:    bonding | ionic bonding

KEY:   Lewis electron-dot symbol                 MSC:   general chemistry

 

  1. Which of the following is the Lewis dot structure for one formula unit of magnesium sulfide?
A)
B)
C)
D)
E)

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    9.2

OBJ:    Write the electron configuration and Lewis symbol for a main-group ion. (Example 9.2)    TOP:    bonding | ionic bonding

KEY:   Lewis electron-dot symbol                 MSC:   general chemistry

 

  1. All of the following species have ground-state noble-gas electron configurations except
A) Ge4+
B) K+
C) Kr
D) I
E) P3–

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    9.2

OBJ:    Write the electron configuration and Lewis symbol for a main-group ion. (Example 9.2)    TOP:    bonding | ionic bonding

KEY:   electron configurations of ions | ions of the main-group elements

MSC:   general chemistry

 

  1. Which of the following concerning the formation of ions is/are correct?
1. Elements with large electron affinities tend to form monoatomic anions.
2. No ionic compounds are found with positive ions having charges greater than the element group number.
3. Group 1A and 2A metals always have a positive charge equal to their group number in their ionic compounds.

 

A) 1 only
B) 2 only
C) 3 only
D) 1 and 2
E) 1, 2, and 3

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    9.2

OBJ:    Describe some general properties of ionic substances.

TOP:    bonding | ionic bonding

 

  1. Which of the following concerning the formation of ions is/are correct?
1. Compounds of +4 ions are rare because of the large amount of energy required to form a +4 ion.
2. Some main group metals may have more than one possible positive charge because of the different energies required to remove s versus p valence electrons.
3. The nonmetals closest to the noble gases (Group 6A and 7A) tend to form monatomic anions with noble gas configurations.

 

A) 1 only
B) 2 only
C) 3 only
D) 1 and 2
E) 1, 2, and 3

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    9.2

OBJ:    Describe some general properties of ionic substances.

TOP:    bonding | ionic bonding

 

  1. All of the following have ground-state noble-gas electron configurations except
A) Ar
B) N3–
C) P3+
D) Mg2+
E) Cl

 

 

ANS:   C                     PTS:    1                      DIF:    easy                 REF:    9.2

OBJ:    Write the electron configuration and Lewis symbol for a main-group ion. (Example 9.2)    TOP:    bonding | ionic bonding

KEY:   electron configurations of ions | ions of the main-group elements

MSC:   general chemistry

 

  1. The formation of which monatomic ion of sulfur is the most energetically favorable?
A)
B)
C)
D)
E)

 

 

ANS:   B                     PTS:    1                      DIF:    easy                 REF:    9.2

OBJ:    Write the electron configuration and Lewis symbol for a main-group ion. (Example 9.2)    TOP:    bonding | ionic bonding

KEY:   electron configurations of ions | ions of the main-group elements

MSC:   general chemistry

 

  1. What is the ground-state electron configuration of the  ion?
A)
B)
C)
D)
E)

 

 

ANS:   C                     PTS:    1                      DIF:    easy                 REF:    9.2

OBJ:    Write the electron configuration and Lewis symbol for a main-group ion. (Example 9.2)    TOP:    bonding | ionic bonding

KEY:   electron configurations of ions | ions of the main-group elements

MSC:   general chemistry

 

  1. What is the ground-state electron configuration of the sulfide ion?
A)
B)
C)
D)
E)

 

 

ANS:   C                     PTS:    1                      DIF:    easy                 REF:    9.2

OBJ:    Write the electron configuration and Lewis symbol for a main-group ion. (Example 9.2)    TOP:    bonding | ionic bonding

KEY:   electron configurations of ions | ions of the main-group elements

MSC:   general chemistry

 

  1. What is the electron configuration for ?
A)
B)
C)
D)
E)

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    9.2

OBJ:    Write electron configurations of transition-metal ions. (Example 9.3)

TOP:    bonding | ionic bonding

KEY:   electron configurations of ions | transition-metal ions           MSC:   general chemistry

 

  1. The Cr2+ ion would be expected to have ____ unpaired electrons.
A) 4
B) 2
C) 3
D) 0
E) 1

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    9.2

OBJ:    Write electron configurations of transition-metal ions. (Example 9.3)

TOP:    bonding | ionic bonding

KEY:   electron configurations of ions | transition-metal ions           MSC:   general chemistry

 

  1. What is the electron configuration of ?
A)
B)
C)
D)
E)

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    9.2

OBJ:    Write electron configurations of transition-metal ions. (Example 9.3)

TOP:    bonding | ionic bonding

KEY:   electron configurations of ions | transition-metal ions           MSC:   general chemistry

 

  1. What is the ground-state electron configuration of ?
A)
B)
C)
D)
E)

 

 

ANS:   C                     PTS:    1                      DIF:    easy                 REF:    9.2

OBJ:    Write electron configurations of transition-metal ions. (Example 9.3)

TOP:    bonding | ionic bonding

KEY:   electron configurations of ions | transition-metal ions           MSC:   general chemistry

 

  1. What is the ground-state electron configuration of ?
A)
B)
C)
D)
E)

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    9.2

OBJ:    Write electron configurations of transition-metal ions. (Example 9.3)

TOP:    bonding | ionic bonding

KEY:   electron configurations of ions | transition-metal ions           MSC:   general chemistry

 

  1. What is the ground-state electron configuration of the copper(I) ion, ?
A)
B)
C)
D)
E)

 

 

ANS:   D                     PTS:    1                      DIF:    easy                 REF:    9.2

OBJ:    Write electron configurations of transition-metal ions. (Example 9.3)

TOP:    bonding | ionic bonding

KEY:   electron configurations of ions | transition-metal ions           MSC:   general chemistry

 

  1. What is the ground-state electron configuration of ?
A)
B)
C)
D)
E)

 

 

ANS:   D                     PTS:    1                      DIF:    easy                 REF:    9.2

OBJ:    Write electron configurations of transition-metal ions. (Example 9.3)

TOP:    bonding | ionic bonding

KEY:   electron configurations of ions | transition-metal ions           MSC:   general chemistry

 

  1. All of the following ions have the ground-state electron configuration of a noble gas except which one?
A) Ca2+
B) Cl
C) Ga3+
D) Al3+
E) H

 

 

ANS:   C                     PTS:    1                      DIF:    easy                 REF:    9.3

OBJ:    Define isoelectronic ions.                   TOP:    bonding | ionic bonding

MSC:   general chemistry

 

  1. Which set of ions are isoelectronic in their ground-state electron configurations?
A) N, O, F, Ne
B) Na+, K+, Rb+, Cs+
C) F, Cl, Br, I
D) Mg2+, Ca2+, Sr2+, Ba2+
E) N3–, O2–, Mg2+, Al3+

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    9.3

OBJ:    Define isoelectronic ions.                   TOP:    bonding | ionic bonding

KEY:   electron configurations of ions           MSC:   general chemistry

 

  1. Which of the following species is isoelectronic with Kr?
A)
B)
C)
D)
E) Ar

 

 

ANS:   B                     PTS:    1                      DIF:    easy                 REF:    9.3

OBJ:    Define isoelectronic ions.                   TOP:    bonding | ionic bonding

KEY:   ionic radii        MSC:   general chemistry

 

  1. All of the following species are isoelectronic except
A) Ar.
B) Ca2+.
C) Mg2+.
D) Cl.
E) S2–.

 

 

ANS:   C                     PTS:    1                      DIF:    easy                 REF:    9.3

OBJ:    Define isoelectronic ions.                   TOP:    bonding | ionic bonding

KEY:   ionic radii        MSC:   general chemistry

 

  1. Which pair of species is isoelectronic?
A) Na+ and K+
B) K+ and Cl
C) Be2+ and Na+
D) Ne and Ar
E) Li+ and Ne

 

 

ANS:   B                     PTS:    1                      DIF:    easy                 REF:    9.3

OBJ:    Define isoelectronic ions.                   TOP:    bonding | ionic bonding

KEY:   ionic radii        MSC:   general chemistry

 

  1. Which two species are isoelectronic?
A) Na+ and K+
B) Al3+ and Ne
C) P and Ca+
D) Cl and F
E) Ca2+ and Mg2+

 

 

ANS:   B                     PTS:    1                      DIF:    easy                 REF:    9.3

OBJ:    Define isoelectronic ions.                   TOP:    bonding | ionic bonding

MSC:   general chemistry

 

  1. All of the following species are isoelectronic except
A) S2–
B) K+
C) Na+
D) Ar
E) Cl

 

 

ANS:   C                     PTS:    1                      DIF:    easy                 REF:    9.3

OBJ:    Define isoelectronic ions.                   TOP:    bonding | ionic bonding

MSC:   general chemistry

 

  1. All of the following species are isoelectronic except
A) O
B) Ne
C) N3–
D) Mg2+
E) F

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    9.3

OBJ:    Define isoelectronic ions.                   TOP:    bonding | ionic bonding

MSC:   general chemistry

 

  1. The following species, , , and , all have the same number of
A) electrons.
B) nucleons.
C) neutrons.
D) protons.
E) isotopes.

 

 

ANS:   A                     PTS:    1                      DIF:    moderate         REF:    9.3

OBJ:    Define isoelectronic ions.                   TOP:    bonding | ionic bonding

KEY:   ionic radii        MSC:   general chemistry

 

  1. Rank the following ions in order of decreasing atomic radii: Mo4+, Mo5+, Mo6+.
A) Mo4+ > Mo5+ > Mo6+
B) Mo6+ > Mo5+ > Mo4+
C) Mo5+ > Mo4+ > Mo6+
D) Mo6+ > Mo4+ > Mo5+
E) Mo4+ > Mo6+ > Mo5+

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    9.3

OBJ:    Use periodic trends to obtain relative ionic radii. (Example 9.4)

TOP:    bonding | ionic bonding

 

  1. Rank the following ions in order of decreasing atomic radii: Te2-, Te4+, Te6+.
A) Te2- > Te4+ > Te6+
B) Te6+ > Te4+ > Te2-
C) Te4+ > Te2- > Te6+
D) Te2- > Te6+ > Te4+
E) Te4+ > Te6+ > Te2-

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    9.3

OBJ:    Use periodic trends to obtain relative ionic radii. (Example 9.4)

TOP:    bonding | ionic bonding

 

  1. Which of the following species would you expect to have the largest radius?
A)
B) F
C)
D)
E)

 

 

ANS:   D                     PTS:    1                      DIF:    easy                 REF:    9.3

OBJ:    Use periodic trends to obtain relative ionic radii. (Example 9.4)

TOP:    bonding | ionic bonding                     KEY:   ionic radii        MSC:   general chemistry

 

  1. In which of the following lists do the ions not appear in order of increasing ionic radius?
A) S2– < Cl < K+
B) Na+ < F < O2–
C) Cl < Br < I
D) Li+ < Na+ < K+
E) Al3+ < Mg2+ < Na+

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    9.3

OBJ:    Use periodic trends to obtain relative ionic radii. (Example 9.4)

TOP:    bonding | ionic bonding                     KEY:   ionic radii        MSC:   general chemistry

 

  1. Rank the following ions in order of decreasing ionic radius: S2–, O2–, F, Na+, Mg2+.
A) S2–, O2–, F, Na+, Mg2+
B) O2–, F, Na+, Mg2+, S2–
C) O2–, S2–, F, Na+, Mg2+
D) Mg2+, Na+, F, O2–, S2–
E) Mg2+, S2–, Na+, F, O2–

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    9.3

OBJ:    Use periodic trends to obtain relative ionic radii. (Example 9.4)

TOP:    bonding | ionic bonding                     KEY:   ionic radii        MSC:   general chemistry

 

  1. Rank the following species in order of decreasing radii: K+, Cl, Se2-, Br.
A) Br >  Se2- > Cl > K+
B) Se2- > Br > Cl > K+
C)  K+> Cl >  Se2- > Br
D) Br >  Cl > Se2- > K+
E)  Cl >  Se2- > K+ > Br

 

 

ANS:   B                     PTS:    1                      DIF:    easy                 REF:    9.3

OBJ:    Use periodic trends to obtain relative ionic radii. (Example 9.4)

TOP:    bonding | ionic bonding

 

  1. For which of the following pairs of species is the difference in radius the greatest?
A) C and F
B) K+ and Br
C) Li+ and I
D) Na and Mg
E) O2– and F

 

 

ANS:   C                     PTS:    1                      DIF:    moderate         REF:    9.3

OBJ:    Use periodic trends to obtain relative ionic radii. (Example 9.4)

TOP:    bonding | ionic bonding                     KEY:   ionic radii        MSC:   general chemistry

 

  1. Which of the following is the best explanation for a covalent bond?
A) electrons simultaneously attracted by more than one nucleus
B) an interaction between outer electrons
C) the overlapping of unoccupied orbitals of two or more atoms
D) the overlapping of two electron-filled orbitals having different energies
E) a positive ion attracting negative ions

 

 

ANS:   A                     PTS:    1                      DIF:    moderate         REF:    9.4

OBJ:    Describe the formation of a covalent bond between two atoms.

TOP:    bonding | covalent bonding                MSC:   general chemistry

 

  1. The formulas of many binary covalent compounds can be predicted on the basis
A) that a bond is formed by the overlapping of two filled orbitals.
B) that the number of bonds an atom can have is equal to the number of empty valence orbitals it has.
C) that a bond is formed by the overlapping of atomic orbitals.
D) that the number of bonds an atom can have is equal to the number of half-filled valence orbitals it can have.
E) that bonding electrons are simultaneously attracted by more than one nucleus.

 

 

ANS:   D                     PTS:    1                      DIF:    moderate         REF:    9.4

OBJ:    Describe the formation of a covalent bond between two atoms.

TOP:    bonding | covalent bonding                MSC:   general chemistry

 

  1. During the formation of a chemical bond between two hydrogen atoms, which of the following statements is always true?
A) Energy is released during the formation of the bond.
B) A polar covalent bond is formed.
C) Electrons always are between the nuclei of the atoms.
D) One of the hydrogen atoms is ionized.
E) Resonance stabilizes the bond.

 

 

ANS:   A                     PTS:    1                      DIF:    moderate         REF:    9.4

OBJ:    Describe the formation of a covalent bond between two atoms.

TOP:    bonding | covalent bonding                MSC:   general chemistry

 

  1. A bond in which both electrons of the bond are donated by one atom is called ____.
A) a coordinate covalent bond
B) a polar covalent bond
C) an ionic bond
D) a double bond
E) a triple bond

 

 

ANS:   A                     PTS:    1                      DIF:    moderate         REF:    9.4

OBJ:    Define coordinate covalent bond.

 

  1. A bond in which an electron pair is unequally shared by two atoms is
A) polar covalent.
B) coordinate covalent.
C) ionic.
D) nonpolar covalent.
E) metallic.

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    9.5

OBJ:    Define polar covalent bond.               TOP:    bonding | covalent bonding

KEY:   electronegativity | polar covalent bond                                  MSC:   general chemistry

 

  1. The measure of the attraction that an atom has for the electrons in a chemical bond is called
A) electronegativity.
B) lattice energy.
C) resonance energy.
D) ionization energy.
E) electron affinity.

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    9.5

OBJ:    Define electronegativity.                    TOP:    bonding | covalent bonding

KEY:   electronegativity                                 MSC:   general chemistry

 

  1. Which of the following atoms is the most electronegative?
A) B
B) N
C) Al
D) Cs
E) Na

 

 

ANS:   B                     PTS:    1                      DIF:    easy                 REF:    9.5

OBJ:    State the general periodic trends in the electronegativity.

TOP:    bonding | covalent bonding                KEY:   electronegativity

MSC:   general chemistry

 

  1. An atom of which of the following elements has the highest electronegativity?
A) K
B) As
C) Ba
D) Si
E) Br

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    9.5

OBJ:    State the general periodic trends in the electronegativity.

TOP:    bonding | covalent bonding                KEY:   electronegativity

MSC:   general chemistry

 

  1. Which of the following concerning electronegativity is/are correct?
1. Differences in element electronegativities may be used to predict the type of bonding, ionic or covalent, in a substance.
2. The larger the differences in electronegativity between two bonded atoms the more polar the bond.
3. The electrons in a polar bond tend to spend more time around the least electronegative element.

 

A) 1 only
B) 2 only
C) 3 only
D) 1 and 2
E) 1, 2, and 3

 

 

ANS:   D                     PTS:    1                      DIF:    moderate         REF:    9.5

OBJ:    Use electronegativity to obtain relative bond polarity. (Example 9.5)

TOP:    bonding | covalent bonding

 

  1. Which pair of elements would form a covalent bond that is the least polar?
A) S and Li
B) Al and N
C) O and H
D) O and F
E) S and Cs

 

 

ANS:   D                     PTS:    1                      DIF:    easy                 REF:    9.5

OBJ:    Use electronegativity to obtain relative bond polarity. (Example 9.5)

TOP:    bonding | covalent bonding                KEY:   electronegativity | polar covalent bond

MSC:   general chemistry

 

  1. Rank the following covalent bonds in order of decreasing polarity: C-H, N-H, O-H, F-H.
A) F-H, O-H, N-H, C-H
B) O-H, F-H, N-H, C-H
C) N-H, F-H, O-H, C-H
D) C-H, N-H, O-H, F-H
E) C-H, F-H, O-H, N-H

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    9.5

OBJ:    Use electronegativity to obtain relative bond polarity. (Example 9.5)

TOP:    bonding | covalent bonding

 

  1. Which of the following bonds would be the least polar yet still be considered polar covalent?
A) Mg-O
B) C-O
C) Si-O
D) O-O
E) N-O

 

 

ANS:   E                     PTS:    1                      DIF:    moderate         REF:    9.5

OBJ:    Use electronegativity to obtain relative bond polarity. (Example 9.5)

TOP:    bonding | covalent bonding                KEY:   electronegativity | polar covalent bond

MSC:   general chemistry

 

  1. In which of the following species is there the greatest unequal sharing of the bonding electrons?
A) SO3
B) SO32–
C) H2S
D) H2O
E) NH4+

 

 

ANS:   D                     PTS:    1                      DIF:    easy                 REF:    9.5

OBJ:    Use electronegativity to obtain relative bond polarity. (Example 9.5)

TOP:    bonding | covalent bonding                KEY:   electronegativity | polar covalent bond

MSC:   general chemistry

 

  1. The Lewis formula for phosphine, PH3, has
A) four lone pairs.
B) four bonding pairs.
C) two bonding pairs and two lone pairs.
D) three bonding pairs and one lone pair.
E) one bonding pair and three lone pairs.

 

 

ANS:   D                     PTS:    1                      DIF:    easy                 REF:    9.6

OBJ:    Write Lewis formulas with single bonds only. (Example 9.6)

TOP:    bonding | covalent bonding                KEY:   Lewis dot formula

MSC:   general chemistry

 

  1. Which of the following concerning Lewis electron-dot formulae is/are correct?
1. A Lewis electron-dot formula (Lewis structure) is identical to a structural formula.
2. The skeleton of a molecule need not be known to draw the correct Lewis electron-dot structure.
3. Lewis electron-dot formulae show the location of bonding and nonbonding electrons in three dimensional space.

 

A) 1 only
B) 2 only
C) 3 only
D) 1, 2, and 3
E) none of the above

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    9.6

OBJ:    Lewis electron-dot structures.            TOP:    bonding | covalent bonding

 

  1. What is the total number of valence electrons in N2O4?
A) 34
B) 11
C) 16
D) 17
E) 46

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    9.6

OBJ:    Write Lewis formulas with single bonds only. (Example 9.6)

TOP:    bonding | covalent bonding

 

  1. In the Lewis formula for difluorodiazine, N2F2, the total number of lone electron pairs around the two nitrogen atoms is
A) 4.
B) 0.
C) 3.
D) 1.
E) 2.

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    9.6

OBJ:    Write Lewis formulas having including multiple bonds. (Example 9.7)

TOP:    bonding | ionic bonding                     KEY:   Lewis dot formula

MSC:   general chemistry

 

  1. Which of the following Lewis formulas is incorrect?
A)
B)
C)
D)
E)

 

 

ANS:   B                     PTS:    1                      DIF:    easy                 REF:    9.6

OBJ:    Write Lewis formulas having including multiple bonds. (Example 9.7)

TOP:    bonding | covalent bonding                KEY:   Lewis dot formula

MSC:   general chemistry

 

  1. Which of the following is a correct Lewis electron-dot formula for H2SO4?
A)
B)
C)
D)
E)

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    9.6

OBJ:    Write Lewis formulas having including multiple bonds. (Example 9.7)

TOP:    bonding | covalent bonding

 

  1. Which of the following is a correct Lewis electron-dot formula for CO?
A)
B)
C)
D)
E)

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    9.6

OBJ:    Write Lewis formulas having including multiple bonds. (Example 9.7)

TOP:    bonding | covalent bonding

 

  1. Which one of the following has a Lewis formula most similar to that of NO?
A) O2
B) O22–
C) O2
D) NO+
E) NO

 

 

ANS:   A                     PTS:    1                      DIF:    moderate         REF:    9.6

OBJ:    Write Lewis formulas having including multiple bonds. (Example 9.7)

TOP:    bonding | covalent bonding                KEY:   Lewis dot formula

MSC:   general chemistry

 

  1. The Lewis structure for each of the following except ____contains at least one double bond.
A) O2
B) CS2
C) C2H4
D) NO+
E) N2H2

 

 

ANS:   D                     PTS:    1                      DIF:    easy                 REF:    9.6

OBJ:    Write Lewis formulas having including multiple bonds. (Example 9.7)

TOP:    bonding | covalent bonding                KEY:   multiple bonding

MSC:   general chemistry

 

  1. The Lewis structure for each of the following species except ____ contains a triple bond.
A) N3
B) N2
C) HCCH
D) NO+
E) O22+

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    9.6

OBJ:    Write Lewis formulas having including multiple bonds. (Example 9.7)

TOP:    bonding | covalent bonding                KEY:   multiple bonds

MSC:   general chemistry

 

  1. How many valence electrons are present in the Lewis formula for the hypochlorite ion, ?
A) 20
B) 12
C) 18
D) 14
E) 16

 

 

ANS:   D                     PTS:    1                      DIF:    easy                 REF:    9.6

OBJ:    Write Lewis formulas for ionic species. (Example 9.8)

TOP:    bonding | covalent bonding                KEY:   Lewis dot formula

MSC:   general chemistry

 

  1. What is the total number of valence electrons in the ?
A) 20
B) 12
C) 16
D) 22
E) 18

 

 

ANS:   C                     PTS:    1                      DIF:    easy                 REF:    9.6

OBJ:    Write Lewis formulas for ionic species. (Example 9.8)

TOP:    bonding | covalent bonding                KEY:   Lewis dot formula

MSC:   general chemistry

 

  1. What is the total number of valence electrons in the nitrosyl ion, ?
A) 11
B) 13
C) 10
D) 12
E) 14

 

 

ANS:   C                     PTS:    1                      DIF:    easy                 REF:    9.6

OBJ:    Write Lewis formulas for ionic species. (Example 9.8)

TOP:    bonding | covalent bonding                KEY:   Lewis dot formula

MSC:   general chemistry

 

  1. How many valence electrons are there in the tetraethylammonium ion, ?
A) 56
B) 32
C) 16
D) 57
E) 48

 

 

ANS:   A                     PTS:    1                      DIF:    moderate         REF:    9.6

OBJ:    Write Lewis formulas for ionic species. (Example 9.8)

TOP:    bonding | covalent bonding                KEY:   Lewis dot formula

MSC:   general chemistry

 

  1. What is the total number of valence electrons in the monohydrogen phosphate ion, ?
A) 30
B) 28
C) 32
D) 34
E) 36

 

 

ANS:   C                     PTS:    1                      DIF:    easy                 REF:    9.6

OBJ:    Write Lewis formulas for ionic species. (Example 9.8)

TOP:    bonding | covalent bonding                KEY:   Lewis dot formula

MSC:   general chemistry

 

  1. How many valence electrons does a nitrate ion have?
A) 30
B) 28
C) 24
D) 32
E) 22

 

 

ANS:   C                     PTS:    1                      DIF:    moderate         REF:    9.6

OBJ:    Write Lewis formulas for ionic species. (Example 9.8)

TOP:    bonding | covalent bonding                KEY:   Lewis dot formula

MSC:   general chemistry

 

  1. How many valence electrons are there in the acetate ion, ?
A) 23
B) 24
C) 36
D) 38
E) 22

 

 

ANS:   B                     PTS:    1                      DIF:    easy                 REF:    9.6

OBJ:    Write Lewis formulas for ionic species. (Example 9.8)

TOP:    bonding | covalent bonding                KEY:   Lewis dot formula

MSC:   general chemistry

 

  1. The total number of valence electrons in a peroxide ion, , is
A) 2.
B) 12.
C) 14.
D) 13.
E) 15.

 

 

ANS:   C                     PTS:    1                      DIF:    moderate         REF:    9.6

OBJ:    Write Lewis formulas for ionic species. (Example 9.8)

TOP:    bonding | covalent bonding                KEY:   Lewis dot formula

MSC:   general chemistry

 

  1. The number of valence electrons in the perfluoropropionate ion, , is
A) 60.
B) 62.
C) 66.
D) 80.
E) 58.

 

 

ANS:   A                     PTS:    1                      DIF:    moderate         REF:    9.6

OBJ:    Write Lewis formulas for ionic species. (Example 9.8)

TOP:    bonding | covalent bonding                KEY:   Lewis dot formula

MSC:   general chemistry

 

  1. The total number of valence electrons in the tetrathionate ion, S4O62–, is
A) 58.
B) 60.
C) 56.
D) 54.
E) 62.

 

 

ANS:   E                     PTS:    1                      DIF:    moderate         REF:    9.6

OBJ:    Write Lewis formulas for ionic species. (Example 9.8)

TOP:    bonding | covalent bonding                KEY:   Lewis dot formula

MSC:   general chemistry

 

  1. The number of valence electrons in the nitrite ion is
A) 22.
B) 16.
C) 23.
D) 18.
E) 24.

 

 

ANS:   D                     PTS:    1                      DIF:    easy                 REF:    9.6

OBJ:    Write Lewis formulas for ionic species. (Example 9.8)

TOP:    bonding | covalent bonding                KEY:   Lewis dot formula

MSC:   general chemistry

 

  1. The total number of valence electrons in the phosphate ion is
A) 32.
B) 30.
C) 24.
D) 28.
E) 26.

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    9.6

OBJ:    Write Lewis formulas for ionic species. (Example 9.8)

TOP:    bonding | covalent bonding                KEY:   Lewis dot formula

MSC:   general chemistry

 

  1. What is the total number of valence electrons in the sulfite ion?
A) 30
B) 26
C) 24
D) 8
E) 32

 

 

ANS:   B                     PTS:    1                      DIF:    moderate         REF:    9.6

OBJ:    Write Lewis formulas for ionic species. (Example 9.8)

TOP:    bonding | covalent bonding                KEY:   Lewis dot formula

MSC:   general chemistry

 

  1. In the Lewis formula for hydrazinium ion, N2H5+, the total number of lone electron pairs around the two nitrogen atoms is
A) 0.
B) 4.
C) 3.
D) 1.
E) 2.

 

 

ANS:   D                     PTS:    1                      DIF:    easy                 REF:    9.6

OBJ:    Write Lewis formulas for ionic species. (Example 9.8)

TOP:    bonding | ionic bonding                     KEY:   Lewis dot formula

MSC:   general chemistry

 

  1. In the Lewis formula for the hydroxide ion, OH, the number of lone pairs of electrons around the oxygen atom is
A) 3.
B) 1.
C) 2.
D) 0.
E) 4.

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    9.6

OBJ:    Write Lewis formulas for ionic species. (Example 9.8)

TOP:    bonding | covalent bonding

 

  1. The concept of resonance describes molecular structures
A) that have several different geometric arrangements.
B) that have delocalized bonding.
C) that are formed from hybridized orbitals.
D) that have different molecular formulas.
E) that have electrons resonating.

 

 

ANS:   B                     PTS:    1                      DIF:    easy                 REF:    9.7

OBJ:    Define resonance description.            TOP:    bonding | covalent bonding

KEY:   resonance        MSC:   general chemistry

 

  1. All the following statements about resonance are true except
A) A single Lewis formula does not provide an adequate representation of the bonding.
B) Resonance describes a more stable situation than does any one contributing resonance formula.
C) Resonance describes the oscillation and vibration of electrons.
D) The contributing resonance formulas differ only in the arrangement of the electrons.
E) Resonance describes the bonding as intermediate between the contributing resonance formulas.

 

 

ANS:   C                     PTS:    1                      DIF:    easy                 REF:    9.7

OBJ:    Define resonance description.            TOP:    bonding | covalent bonding

KEY:   resonance        MSC:   general chemistry

 

  1. In which of the following species is resonance most likely to take place?
A)
B)
C)
D)
E)

 

 

ANS:   A                     PTS:    1                      DIF:    moderate         REF:    9.7

OBJ:    Write resonance formulas. (Example 9.9)

TOP:    bonding | covalent bonding                KEY:   resonance        MSC:   general chemistry

 

  1. For the resonance hybrid of the nitrite ion,

what is the average number of bonds between the nitrogen atom and an oxygen atom?

A) 3/2
B) 1
C) 4/3
D) 2
E) 5/3

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    9.7

OBJ:    Write resonance formulas. (Example 9.9)

TOP:    bonding | covalent bonding                KEY:   resonance        MSC:   general chemistry

 

  1. Which one of the following species is best described by writing three equivalent Lewis formulas?
A) SO3
B) SF4
C) SO42–
D) SO32–
E) SOF4

 

 

ANS:   A                     PTS:    1                      DIF:    difficult           REF:    9.7

OBJ:    Write resonance formulas. (Example 9.9)

TOP:    bonding | covalent bonding                KEY:   resonance | delocalization

MSC:   general chemistry

 

  1. For each of the following species except ____, the electronic structure may be adequately described by two resonance formulas.
A) O3
B) SO32–
C) NO2
D) C6H6
E) SO2

 

 

ANS:   B                     PTS:    1                      DIF:    easy                 REF:    9.7

OBJ:    Write resonance formulas. (Example 9.9)

TOP:    bonding | covalent bonding                KEY:   resonance | delocalization

MSC:   general chemistry

 

  1. Which of the following are two appropriate resonance formulas for the acetate ion, CH3CO2?
A)
B)
C)
D)
E)

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    9.7

OBJ:    Write resonance formulas. (Example 9.9)

TOP:    bonding | covalent bonding                KEY:   resonance | delocalization

MSC:   general chemistry

 

  1. The electronic structure of which of the following species cannot be adequately described by a single Lewis formula?
A) CS2
B) POF3
C) HNNH
D) NO3
E) H2NNH2

 

 

ANS:   D                     PTS:    1                      DIF:    easy                 REF:    9.7

OBJ:    Write resonance formulas. (Example 9.9)

TOP:    bonding | covalent bonding                KEY:   resonance | delocalization

MSC:   general chemistry

 

  1. Which of the following species represents an exception to the octet rule?
A) SiO2
B) HBr
C) SF4
D) PCl3
E) CO2

 

 

ANS:   C                     PTS:    1                      DIF:    easy                 REF:    9.8

OBJ:    Write Lewis formulas (exceptions to the octet rule). (Example 9.10)

TOP:    bonding | covalent bonding                KEY:   exceptions to the octet rule

MSC:   general chemistry

 

  1. The Lewis structure of a molecule has a high probability of violating the octet rule if

 

1. the molecule has an odd number of valence electrons.
2. the central atom is surrounded by more than four atoms or eight valence electrons.
3. the central atom is from Group 2A or 3A.

 

A) 1 only
B) 2 only
C) 3 only
D) 1 and 2
E) 1, 2, and 3

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    9.8

OBJ:    Write Lewis formulas (exceptions to the octet rule). (Example 9.10)

TOP:    bonding | covalent bonding

 

  1. In which of the following molecules is the octet rule violated?
A) SF6
B) OF2
C) ClF
D) PF3
E) SiF4

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    9.8

OBJ:    Write Lewis formulas (exceptions to the octet rule). (Example 9.10)

TOP:    bonding | covalent bonding

 

  1. The octet rule is violated by at least one atom in all the following compounds except
A) SF6.
B) PF6.
C) BrF5.
D) ICl2.
E) SiF4.

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    9.8

OBJ:    Write Lewis formulas (exceptions to the octet rule). (Example 9.10)

TOP:    bonding | covalent bonding

 

  1. The Lewis formula of which species does not represent an exception to the octet rule?
A) SiF5
B) SCl6
C) SF4
D) BF3
E) CF3

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    9.8

OBJ:    Write Lewis formulas (exceptions to the octet rule). (Example 9.10)

TOP:    bonding | covalent bonding

 

  1. Which species has the largest number of lone pairs of electrons around the central atom?
A) XeF2
B) XeF6
C) XeOF4
D) XeF4
E) SiF62–

 

 

ANS:   A                     PTS:    1                      DIF:    moderate         REF:    9.8

OBJ:    Write Lewis formulas (exceptions to the octet rule). (Example 9.10)

TOP:    bonding | covalent bonding                KEY:   exceptions to the octet rule

MSC:   general chemistry

 

  1. In the Lewis formula for ClF3, how many lone pairs are around the central atom?
A) 0
B) 4
C) 3
D) 2
E) 1

 

 

ANS:   D                     PTS:    1                      DIF:    easy                 REF:    9.8

OBJ:    Write Lewis formulas (exceptions to the octet rule). (Example 9.10)

TOP:    bonding | covalent bonding                KEY:   exceptions to the octet rule

MSC:   general chemistry

 

  1. Which of the following molecules has an incorrect Lewis formula?
A)
B)
C)
D)
E)

 

 

ANS:   A                     PTS:    1                      DIF:    moderate         REF:    9.8

OBJ:    Write Lewis formulas (exceptions to the octet rule). (Example 9.10)

TOP:    bonding | covalent bonding                KEY:   exceptions to the octet rule

MSC:   general chemistry

 

  1. In the Lewis dot formula for ICl2, the number of lone pairs of electrons around the central iodine atom is
A) 2.
B) 4.
C) 1.
D) 3.
E) 0.

 

 

ANS:   D                     PTS:    1                      DIF:    moderate         REF:    9.8

OBJ:    Write Lewis formulas (exceptions to the octet rule). (Example 9.10)

TOP:    bonding | covalent bonding                KEY:   exceptions to the octet rule

MSC:   general chemistry

 

  1. Which of the following has an incomplete octet in its Lewis structure?
A) SO2
B) F2
C) NO2
D) ICl
E) CO2

 

 

ANS:   C                     PTS:    1                      DIF:    moderate         REF:    9.8

OBJ:    Write Lewis formulas (exceptions to the octet rule). (Example 9.10)

TOP:    bonding | covalent bonding

 

  1. Which of the following Lewis structures best describes BF3?
A)
B)
C)
D)
E)

 

 

ANS:   C                     PTS:    1                      DIF:    easy                 REF:    9.8

OBJ:    Note exceptions to the octet rule in Groups IIA and Group IIIA elements.

TOP:    bonding | covalent bonding                KEY:   exceptions to the octet rule

MSC:   general chemistry

 

  1. Which of the following species represents an exception to the octet rule?
A) BF3
B) BF4
C) CH3OH
D) CCl4
E) PH3

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    9.8

OBJ:    Note exceptions to the octet rule in Groups IIA and Group IIIA elements.

TOP:    bonding | covalent bonding                KEY:   exceptions to the octet rule

MSC:   general chemistry

 

  1. From a consideration of the Lewis structure of the thiocyanate ion, SCN, in which carbon has a double bond with both the sulfur and nitrogen atoms, the formal charges on the sulfur, carbon, and nitrogen atoms are, respectively,
A) –1, +1, –1.
B) –2, 0, +1.
C) –1, 0, 0.
D) –2, +1, 0.
E) 0, 0, –1.

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    9.9

OBJ:    State the rules for obtaining formal charge.

TOP:    bonding | covalent bonding                KEY:   formal charge

MSC:   general chemistry

 

  1. Which of the following is/are true concerning formal charge?

 

1. The formal charge of each individual atom in a molecule or ion is an actual atomic charge that can be experimentally determined.
2. The formal charge of each individual atom is always the same for each possible resonance form.
3. The sum of the formal charges of each atom in a molecule or ion equal the overall charge of the molecule or ion.

 

A) 1 only
B) 2 only
C) 3 only
D) 1 and 2
E) none

 

 

ANS:   C                     PTS:    1                      DIF:    easy                 REF:    9.9

OBJ:    State the rules for obtaining formal charge.

TOP:    bonding | covalent bonding

 

  1. In the Lewis formula that minimizes formal charge, what is the formal charge on the sulfur atom in sulfur trioxide, SO3?
A) +2
B) +4
C) +6
D) –2
E) 0

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    9.9

OBJ:    State the rules for obtaining formal charge.

TOP:    bonding | covalent bonding                KEY:   formal charge

MSC:   general chemistry

 

  1. Which of the following statements is true concerning the Lewis formula that minimizes formal charge for H2SO4?
A) The formal charge of S is +2, the formal charge of each O is 0, and the formal charge H is 0.
B) The formal charge of S is +2, the formal charge of O is either 0 or –2, and the formal charge of H is +1.
C) The formal charge of S is +2, the formal charge of O is either 0 or –2, and the formal charge of H is 0.
D) The formal charge of S is +2, the formal charge of O is 0, and the formal charge of H is +1.
E) The formal charge of S is 0, the formal charge of O is 0, and the formal charge of H is 0.

 

 

ANS:   E                     PTS:    1                      DIF:    easy                 REF:    9.9

OBJ:    State the rules for obtaining formal charge.

TOP:    bonding | covalent bonding                KEY:   formal charge

MSC:   general chemistry

 

  1. In which of the following species is the octet rule violated by the central atom when the central atom has a formal charge of zero?
A) SOCl2
B) CCl4
C) H2S
D) PF3
E) N2F4

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    9.9

OBJ:    State the rules for obtaining formal charge.

TOP:    bonding | covalent bonding                KEY:   formal charge

MSC:   general chemistry

 

  1. What is the correct Lewis dot formula for sulfuric acid, H2SO4, that minimizes formal charge?
A)
B)
C)
D)
E)

 

 

ANS:   B                     PTS:    1                      DIF:    moderate         REF:    9.9

OBJ:    Use formal charges to determine the best Lewis formula. (Example 9.11)

TOP:    bonding | covalent bonding                KEY:   formal charge

MSC:   general chemistry

 

  1. What is the formal charge on the chlorine atom in the chlorate ion, ClO3, in the Lewis dot formula that minimizes formal charge?
A) –2
B) +1
C) 0
D) –1
E) +2

 

 

ANS:   C                     PTS:    1                      DIF:    moderate         REF:    9.9

OBJ:    Use formal charges to determine the best Lewis formula. (Example 9.11)

TOP:    bonding | covalent bonding                KEY:   formal charge

MSC:   general chemistry

 

  1. In the Lewis dot formula that minimizes formal charge, how many bonds are there in the tetrathionate ion, S4O62– ?
A) 7
B) 9
C) 15
D) 11
E) 13

 

 

ANS:   E                     PTS:    1                      DIF:    difficult           REF:    9.9

OBJ:    Use formal charges to determine the best Lewis formula. (Example 9.11)

TOP:    bonding | covalent bonding                KEY:   formal charge

MSC:   general chemistry

 

  1. In the Lewis dot formula for the bromate ion (BrO3) that minimizes formal charge, the central atom is surrounded by
A) two bonding pairs and two lone pairs of electrons.
B) four bonding pairs and one lone pair of electrons.
C) three bonding pairs and no lone pairs of electrons.
D) five bonding pairs and one lone pair of electrons.
E) three bonding pairs and one lone pair of electrons.

 

 

ANS:   D                     PTS:    1                      DIF:    moderate         REF:    9.9

OBJ:    Use formal charges to determine the best Lewis formula. (Example 9.11)

TOP:    bonding | covalent bonding                KEY:   formal charge

MSC:   general chemistry

 

  1. Which Lewis dot formula for pyrophosphate, P2O74–, minimizes formal charge?
A)
B)
C)
D)
E)

 

 

ANS:   A                     PTS:    1                      DIF:    moderate         REF:    9.9

OBJ:    Use formal charges to determine the best Lewis formula. (Example 9.11)

TOP:    bonding | covalent bonding                KEY:   formal charge

MSC:   general chemistry

 

  1. As the number of bonds between two carbon atoms increases, which of the following decrease(s)?
A) only the bond length
B) only the bond energy
C) only the number of electrons between the carbon atoms
D) all of these
E) none of these

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    9.10

OBJ:    Explain how  bond order and bond length are related. (Example 9.12)

TOP:    bonding | covalent bonding                KEY:   bond length     MSC:   general chemistry

 

  1. Which of the following statements is true?
A) The triple bond in N2 has a smaller bond order and a smaller bond length than the single bond in F2.
B) The triple bond in N2 has a larger bond order and a smaller bond length than the single bond in F2.
C) The triple bond in N2 has a smaller bond order and a larger bond length than the single bond in F2.
D) The triple bond in N2 has a larger bond order and a larger bond length than the single bond in F2.
E) The triple bond in N2 and the single bond in F2 have the same bond order and the same bond length.

 

 

ANS:   B                     PTS:    1                      DIF:    easy                 REF:    9.10

OBJ:    Explain how  bond order and bond length are related. (Example 9.12)

TOP:    bonding | covalent bonding                KEY:   bond order      MSC:   general chemistry

 

  1. Which of the following species has the shortest bond distance?
A) F2
B) Cl2
C) Br2
D) I2
E) H2

 

 

ANS:   E                     PTS:    1                      DIF:    moderate         REF:    9.10

OBJ:    Explain how  bond order and bond length are related. (Example 9.12)

TOP:    bonding | covalent bonding                KEY:   bond length     MSC:   general chemistry

 

  1. Which of the following diatomic species do you expect to have the longest bond length?
A) O2+
B) O22–
C) O2
D) O2
E) they are all identical

 

 

ANS:   B                     PTS:    1                      DIF:    moderate         REF:    9.10

OBJ:    Explain how  bond order and bond length are related. (Example 9.12)

TOP:    bonding | covalent bonding                KEY:   bond length     MSC:   general chemistry

 

  1. Which of the following diatomic molecules has the greatest bond energy?
A) H2
B) HCl
C) Cl2
D) CO
E) HF

 

 

ANS:   D                     PTS:    1                      DIF:    easy                 REF:    9.11

OBJ:    Define bond energy.                          TOP:    bonding | covalent bonding

KEY:   bond energy    MSC:   general chemistry

 

  1. Consider the reaction

2HCl(g) ® H2(g) + Cl2(g); DH = 185 kJ

Which of the following statements is false?

A) The reaction is endothermic.
B) HCl(g) has a negative enthalpy of formation.
C) The products have more enthalpy than the reactants.
D) The HCl bond is longer than either the H2 bond or the Cl2 bond.
E) The bond order of each of the products is one.

 

 

ANS:   D                     PTS:    1                      DIF:    easy                 REF:    9.11

OBJ:    Define bond energy.                          TOP:    bonding | covalent bonding

KEY:   bond energy    MSC:   general chemistry

 

  1. Using bond-energy data, what is DH° for the following reaction?

CH4(g) + 2Cl2(g) ® CCl4(g) + 2H2(g)

Bond Bond Energy (kJ/mol)
C-H 413
H-H 432
Cl-Cl 242
C-Cl 328

 

A) –40 kJ
B) –150 kJ
C) 40 kJ
D) 1415 kJ
E) 150 kJ

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    9.11

OBJ:    Estimate delta H from bond energies. (Example 9.13)

TOP:    bonding | covalent bonding                KEY:   bond energy    MSC:   general chemistry

 

  1. Using bond-energy data, what is DH° for the following reaction?

CH3OH(g) + H2S(g) ® CH3SH(g) + H2O(g)

Bond Bond Energy (kJ/mol)
C-H 413
C-O 358
O-H 463
C-S 259
S-H 339

 

A) –25 kJ
B) -124 kJ
C) 25 kJ
D) –2763 kJ
E) 2738 kJ

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    9.11

OBJ:    Estimate delta H from bond energies. (Example 9.13)

TOP:    bonding | covalent bonding                KEY:   bond energy    MSC:   general chemistry

 

  1. Based on the following data, what is the Br-Br bond energy?

H2(g) + Br2(g) ® HBr(g); DH = –36.44 kJ

Bond Bond Energy (kJ/mol)
H-H 435
H-Br 362

 

A) 399 kJ/mol
B) 216 kJ/mol
C) –216 kJ/mol
D) –289 kJ/mol
E) 289 kJ/mol

 

 

ANS:   B                     PTS:    1                      DIF:    moderate         REF:    9.11

OBJ:    Estimate delta H from bond energies. (Example 9.13)

TOP:    bonding | covalent bonding                KEY:   bond energy    MSC:   general chemistry

 

  1. Based on the following data, what is the bond energy of the C=C bond in 1,1-difluoroethylene, CF2CH2?

CH4(g) ® C(g) + 4H(g); DH = 1656 kJ

CF4(g) ® C(g) + 4F(g); DH = 1756 kJ

CF2CH2(g) ® 2C(g) + 2H(g) + 2F(g); DH = 2317 kJ

A) 611 kJ/mol
B) 845 kJ/mol
C) 820 kJ/mol
D) 1706 kJ/mol
E) 1910 kJ/mol

 

 

ANS:   A                     PTS:    1                      DIF:    moderate         REF:    9.11

OBJ:    Estimate delta H from bond energies. (Example 9.13)

TOP:    bonding | covalent bonding                KEY:   bond energy    MSC:   general chemistry

 

  1. Which of the following covalent molecules does not have the proper Lewis dot formula?
A)
B)
C)
D)
E)

 

 

ANS:   B                     PTS:    1                      DIF:    difficult           REF:    9.9

OBJ:    Use formal charges to determine the best Lewis formula. (Example 9.11)

TOP:    bonding | covalent bonding                KEY:   Lewis dot formula

MSC:   general chemistry

 

  1. Use the bond energies provided to complete the following statement.

 

________ when all of the bonds in acetic acid (CH3COOH) are broken.

 

Bond Bond Energy (kJ/mol)
C-H 413
C-O 358
O-H 463
C=O 745
C-C 348
C=C 614

 

A) 3153 kJ/mol of energy is consumed
B) 3153 kJ/mol of energy is released
C) 2805 kJ/mol of energy is released
D) 2805 kJ/mol of energy is consumed
E) 2766 kJ/mol of energy is consumed

 

 

ANS:   A                     PTS:    1                      DIF:    easy                 REF:    9.11

OBJ:    Estimate delta H from bond energies. (Example 9.13)

TOP:    bonding | covalent bonding

 

Reviews

There are no reviews yet.

Be the first to review “General Chemistry, 10th Edition by Darrell Ebbing – Test Bank”

Your email address will not be published. Required fields are marked *